2,954 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    DIANNE: a modular framework for designing, training and deploying deep neural networks on heterogeneous distributed infrastructure

    Get PDF
    Deep learning has shown tremendous results on various machine learning tasks, but the nature of the problems being tackled and the size of state-of-the-art deep neural networks often require training and deploying models on distributed infrastructure. DIANNE is a modular framework designed for dynamic (re)distribution of deep learning models and procedures. Besides providing elementary network building blocks as well as various training and evaluation routines, DIANNE focuses on dynamic deployment on heterogeneous distributed infrastructure, abstraction of Internet of Things (loT) sensors, integration with external systems and graphical user interfaces to build and deploy networks, while retaining the performance of similar deep learning frameworks. In this paper the DIANNE framework is proposed as an all-in-one solution for deep learning, enabling data and model parallelism though a modular design, offloading to local compute power, and the ability to abstract between simulation and real environment. (C) 2018 Elsevier Inc. All rights reserved

    Fall prevention intervention technologies: A conceptual framework and survey of the state of the art

    Get PDF
    In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Whilst there have been a number of studies that have surveyed technologies for a particular sub-domain of fall prevention, there is no existing research which surveys the full spectrum of falls prevention interventions and characterises the range of technologies that have augmented this landscape. This study presents a conceptual framework and survey of the state of the art of technology-based fall prevention systems which is derived from a systematic template analysis of studies presented in contemporary research literature. The framework proposes four broad categories of fall prevention intervention system: Pre-fall prevention; Post-fall prevention; Fall injury prevention; Cross-fall prevention. Other categories include, Application type, Technology deployment platform, Information sources, Deployment environment, User interface type, and Collaborative function. After presenting the conceptual framework, a detailed survey of the state of the art is presented as a function of the proposed framework. A number of research challenges emerge as a result of surveying the research literature, which include a need for: new systems that focus on overcoming extrinsic falls risk factors; systems that support the environmental risk assessment process; systems that enable patients and practitioners to develop more collaborative relationships and engage in shared decision making during falls risk assessment and prevention activities. In response to these challenges, recommendations and future research directions are proposed to overcome each respective challenge.The Royal Society, grant Ref: RG13082

    Efficient Semantic Segmentation on Edge Devices

    Full text link
    Semantic segmentation works on the computer vision algorithm for assigning each pixel of an image into a class. The task of semantic segmentation should be performed with both accuracy and efficiency. Most of the existing deep FCNs yield to heavy computations and these networks are very power hungry, unsuitable for real-time applications on portable devices. This project analyzes current semantic segmentation models to explore the feasibility of applying these models for emergency response during catastrophic events. We compare the performance of real-time semantic segmentation models with non-real-time counterparts constrained by aerial images under oppositional settings. Furthermore, we train several models on the Flood-Net dataset, containing UAV images captured after Hurricane Harvey, and benchmark their execution on special classes such as flooded buildings vs. non-flooded buildings or flooded roads vs. non-flooded roads. In this project, we developed a real-time UNet based model and deployed that network on Jetson AGX Xavier module

    Collaborative Edge Computing in Mobile Internet of Things

    Get PDF
    The proliferation of Internet-of-Things (IoT) devices has opened a plethora of opportunities for smart networking, connected applications and data driven intelligence. The large distribution of IoT devices within a finite geographical area and the pervasiveness of wireless networking present an opportunity for such devices to collaborate. Centralized decision systems have so far dominated the field, but they are starting to lose relevance in the wake of heterogeneity of the device pool. This thesis is driven by three key hypothesis: (i) In solving complex problems, it is possible to harness unused compute capabilities of the device pool instead of always relying on centralized infrastructures; (ii) When possible, collaborating with neighbors to identify security threats scales well in large environments; (iii) Given the abundance of data from a large pool of devices with possible privacy constraints, collaborative learning drives scalable intelligence. This dissertation defines three frameworks for these hypotheses; collaborative computing, collaborative security and collaborative privacy intelligence. The first framework, Opportunistic collaboration among IoT devices for workload execution, profiles applications and matches resource grants to requests using blockchain to put excess capacity at the edge to good use. The evaluation results show app execution latency comparable to the centralized edge and an outstanding resource utilization at the edge. The second framework, Integrity Threat Identification for Distributed IoT, uses a new spatio-temporal algorithm, based on Local Outlier Factor (LOF) uniquely using mean and variance collaboratively across spatial and temporal dimensions to identify potential threats. Evaluation results on real world underground sensor dataset (Thoreau) show good accuracy and efficiency. The third frame- work, Collaborative Privacy Intelligence, aims to understand privacy invasion by reverse engineering a user’s privacy model using sensors data, and score the level of intrusion for various dimensions of privacy. By having sensors track activities, and learning rule books from the collective insights, we are able to predict ones privacy attributes and states, with reasonable accuracy. As the Edge gains more prominence with computation moving closer to the data source, the above frameworks will drive key solutions and research in areas of Edge federation and collaboration
    • …
    corecore