35 research outputs found

    A Socio-Informatic Approach to Automated Account Classification on Social Media

    Full text link
    Automated accounts on social media have become increasingly problematic. We propose a key feature in combination with existing methods to improve machine learning algorithms for bot detection. We successfully improve classification performance through including the proposed feature.Comment: International Conference on Social Media and Societ

    A framework for malicious host fingerprinting using distributed network sensors

    Get PDF
    Numerous software agents exist and are responsible for increasing volumes of malicious traffic that is observed on the Internet today. From a technical perspective the existing techniques for monitoring malicious agents and traffic were not developed to allow for the interrogation of the source of malicious traffic. This interrogation or reconnaissance would be considered active analysis as opposed to existing, mostly passive analysis. Unlike passive analysis, the active techniques are time-sensitive and their results become increasingly inaccurate as time delta between observation and interrogation increases. In addition to this, some studies had shown that the geographic separation of hosts on the Internet have resulted in pockets of different malicious agents and traffic targeting victims. As such it would be important to perform any kind of data collection over various source and in distributed IP address space. The data gathering and exposure capabilities of sensors such as honeypots and network telescopes were extended through the development of near-realtime Distributed Sensor Network modules that allowed for the near-realtime analysis of malicious traffic from distributed, heterogeneous monitoring sensors. In order to utilise the data exposed by the near-realtime Distributed Sensor Network modules an Automated Reconnaissance Framework was created, this framework was tasked with active and passive information collection and analysis of data in near-realtime and was designed from an adapted Multi Sensor Data Fusion model. The hypothesis was made that if sufficiently different characteristics of a host could be identified; combined they could act as a unique fingerprint for that host, potentially allowing for the re-identification of that host, even if its IP address had changed. To this end the concept of Latency Based Multilateration was introduced, acting as an additional metric for remote host fingerprinting. The vast amount of information gathered by the AR-Framework required the development of visualisation tools which could illustrate this data in near-realtime and also provided various degrees of interaction to accommodate human interpretation of such data. Ultimately the data collected through the application of the near-realtime Distributed Sensor Network and AR-Framework provided a unique perspective of a malicious host demographic. Allowing for new correlations to be drawn between attributes such as common open ports and operating systems, location, and inferred intent of these malicious hosts. The result of which expands our current understanding of malicious hosts on the Internet and enables further research in the area

    Darknet as a Source of Cyber Threat Intelligence: Investigating Distributed and Reflection Denial of Service Attacks

    Get PDF
    Cyberspace has become a massive battlefield between computer criminals and computer security experts. In addition, large-scale cyber attacks have enormously matured and became capable to generate, in a prompt manner, significant interruptions and damage to Internet resources and infrastructure. Denial of Service (DoS) attacks are perhaps the most prominent and severe types of such large-scale cyber attacks. Furthermore, the existence of widely available encryption and anonymity techniques greatly increases the difficulty of the surveillance and investigation of cyber attacks. In this context, the availability of relevant cyber monitoring is of paramount importance. An effective approach to gather DoS cyber intelligence is to collect and analyze traffic destined to allocated, routable, yet unused Internet address space known as darknet. In this thesis, we leverage big darknet data to generate insights on various DoS events, namely, Distributed DoS (DDoS) and Distributed Reflection DoS (DRDoS) activities. First, we present a comprehensive survey of darknet. We primarily define and characterize darknet and indicate its alternative names. We further list other trap-based monitoring systems and compare them to darknet. In addition, we provide a taxonomy in relation to darknet technologies and identify research gaps that are related to three main darknet categories: deployment, traffic analysis, and visualization. Second, we characterize darknet data. Such information could generate indicators of cyber threat activity as well as provide in-depth understanding of the nature of its traffic. Particularly, we analyze darknet packets distribution, its used transport, network and application layer protocols and pinpoint its resolved domain names. Furthermore, we identify its IP classes and destination ports as well as geo-locate its source countries. We further investigate darknet-triggered threats. The aim is to explore darknet inferred threats and categorize their severities. Finally, we contribute by exploring the inter-correlation of such threats, by applying association rule mining techniques, to build threat association rules. Specifically, we generate clusters of threats that co-occur targeting a specific victim. Third, we propose a DDoS inference and forecasting model that aims at providing insights to organizations, security operators and emergency response teams during and after a DDoS attack. Specifically, this work strives to predict, within minutes, the attacks’ features, namely, intensity/rate (packets/sec) and size (estimated number of compromised machines/bots). The goal is to understand the future short-term trend of the ongoing DDoS attacks in terms of those features and thus provide the capability to recognize the current as well as future similar situations and hence appropriately respond to the threat. Further, our work aims at investigating DDoS campaigns by proposing a clustering approach to infer various victims targeted by the same campaign and predicting related features. To achieve our goal, our proposed approach leverages a number of time series and fluctuation analysis techniques, statistical methods and forecasting approaches. Fourth, we propose a novel approach to infer and characterize Internet-scale DRDoS attacks by leveraging the darknet space. Complementary to the pioneer work on inferring DDoS activities using darknet, this work shows that we can extract DoS activities without relying on backscattered analysis. The aim of this work is to extract cyber security intelligence related to DRDoS activities such as intensity, rate and geographic location in addition to various network-layer and flow-based insights. To achieve this task, the proposed approach exploits certain DDoS parameters to detect the attacks and the expectation maximization and k-means clustering techniques in an attempt to identify campaigns of DRDoS attacks. Finally, we conclude this work by providing some discussions and pinpointing some future work

    The Proceedings of 15th Australian Information Security Management Conference, 5-6 December, 2017, Edith Cowan University, Perth, Australia

    Get PDF
    Conference Foreword The annual Security Congress, run by the Security Research Institute at Edith Cowan University, includes the Australian Information Security and Management Conference. Now in its fifteenth year, the conference remains popular for its diverse content and mixture of technical research and discussion papers. The area of information security and management continues to be varied, as is reflected by the wide variety of subject matter covered by the papers this year. The papers cover topics from vulnerabilities in “Internet of Things” protocols through to improvements in biometric identification algorithms and surveillance camera weaknesses. The conference has drawn interest and papers from within Australia and internationally. All submitted papers were subject to a double blind peer review process. Twenty two papers were submitted from Australia and overseas, of which eighteen were accepted for final presentation and publication. We wish to thank the reviewers for kindly volunteering their time and expertise in support of this event. We would also like to thank the conference committee who have organised yet another successful congress. Events such as this are impossible without the tireless efforts of such people in reviewing and editing the conference papers, and assisting with the planning, organisation and execution of the conference. To our sponsors, also a vote of thanks for both the financial and moral support provided to the conference. Finally, thank you to the administrative and technical staff, and students of the ECU Security Research Institute for their contributions to the running of the conference

    Challenges in Cybersecurity and Privacy - the European Research Landscape

    Get PDF
    Cybersecurity and Privacy issues are becoming an important barrier for a trusted and dependable global digital society development. Cyber-criminals are continuously shifting their cyber-attacks specially against cyber-physical systems and IoT, since they present additional vulnerabilities due to their constrained capabilities, their unattended nature and the usage of potential untrustworthiness components. Likewise, identity-theft, fraud, personal data leakages, and other related cyber-crimes are continuously evolving, causing important damages and privacy problems for European citizens in both virtual and physical scenarios. In this context, new holistic approaches, methodologies, techniques and tools are needed to cope with those issues, and mitigate cyberattacks, by employing novel cyber-situational awareness frameworks, risk analysis and modeling, threat intelligent systems, cyber-threat information sharing methods, advanced big-data analysis techniques as well as exploiting the benefits from latest technologies such as SDN/NFV and Cloud systems. In addition, novel privacy-preserving techniques, and crypto-privacy mechanisms, identity and eID management systems, trust services, and recommendations are needed to protect citizens’ privacy while keeping usability levels. The European Commission is addressing the challenge through different means, including the Horizon 2020 Research and Innovation program, thereby financing innovative projects that can cope with the increasing cyberthreat landscape. This book introduces several cybersecurity and privacy research challenges and how they are being addressed in the scope of 15 European research projects. Each chapter is dedicated to a different funded European Research project, which aims to cope with digital security and privacy aspects, risks, threats and cybersecurity issues from a different perspective. Each chapter includes the project’s overviews and objectives, the particular challenges they are covering, research achievements on security and privacy, as well as the techniques, outcomes, and evaluations accomplished in the scope of the EU project. The book is the result of a collaborative effort among relative ongoing European Research projects in the field of privacy and security as well as related cybersecurity fields, and it is intended to explain how these projects meet the main cybersecurity and privacy challenges faced in Europe. Namely, the EU projects analyzed in the book are: ANASTACIA, SAINT, YAKSHA, FORTIKA, CYBECO, SISSDEN, CIPSEC, CS-AWARE. RED-Alert, Truessec.eu. ARIES, LIGHTest, CREDENTIAL, FutureTrust, LEPS. Challenges in Cybersecurity and Privacy - the European Research Landscape is ideal for personnel in computer/communication industries as well as academic staff and master/research students in computer science and communications networks interested in learning about cyber-security and privacy aspects

    Challenges in Cybersecurity and Privacy - the European Research Landscape

    Get PDF
    Cybersecurity and Privacy issues are becoming an important barrier for a trusted and dependable global digital society development. Cyber-criminals are continuously shifting their cyber-attacks specially against cyber-physical systems and IoT, since they present additional vulnerabilities due to their constrained capabilities, their unattended nature and the usage of potential untrustworthiness components. Likewise, identity-theft, fraud, personal data leakages, and other related cyber-crimes are continuously evolving, causing important damages and privacy problems for European citizens in both virtual and physical scenarios. In this context, new holistic approaches, methodologies, techniques and tools are needed to cope with those issues, and mitigate cyberattacks, by employing novel cyber-situational awareness frameworks, risk analysis and modeling, threat intelligent systems, cyber-threat information sharing methods, advanced big-data analysis techniques as well as exploiting the benefits from latest technologies such as SDN/NFV and Cloud systems. In addition, novel privacy-preserving techniques, and crypto-privacy mechanisms, identity and eID management systems, trust services, and recommendations are needed to protect citizens’ privacy while keeping usability levels. The European Commission is addressing the challenge through different means, including the Horizon 2020 Research and Innovation program, thereby financing innovative projects that can cope with the increasing cyberthreat landscape. This book introduces several cybersecurity and privacy research challenges and how they are being addressed in the scope of 15 European research projects. Each chapter is dedicated to a different funded European Research project, which aims to cope with digital security and privacy aspects, risks, threats and cybersecurity issues from a different perspective. Each chapter includes the project’s overviews and objectives, the particular challenges they are covering, research achievements on security and privacy, as well as the techniques, outcomes, and evaluations accomplished in the scope of the EU project. The book is the result of a collaborative effort among relative ongoing European Research projects in the field of privacy and security as well as related cybersecurity fields, and it is intended to explain how these projects meet the main cybersecurity and privacy challenges faced in Europe. Namely, the EU projects analyzed in the book are: ANASTACIA, SAINT, YAKSHA, FORTIKA, CYBECO, SISSDEN, CIPSEC, CS-AWARE. RED-Alert, Truessec.eu. ARIES, LIGHTest, CREDENTIAL, FutureTrust, LEPS. Challenges in Cybersecurity and Privacy - the European Research Landscape is ideal for personnel in computer/communication industries as well as academic staff and master/research students in computer science and communications networks interested in learning about cyber-security and privacy aspects

    Pro-active visualization of cyber security on a National Level : a South African case study

    Get PDF
    The need for increased national cyber security situational awareness is evident from the growing number of published national cyber security strategies. Governments are progressively seen as responsible for cyber security, but at the same time increasingly constrained by legal, privacy and resource considerations. Infrastructure and services that form part of the national cyber domain are often not under the control of government, necessitating the need for information sharing between governments and commercial partners. While sharing of security information is necessary, it typically requires considerable time to be implemented effectively. In an effort to decrease the time and effort required for cyber security situational awareness, this study considered commercially available data sources relating to a national cyber domain. Open source information is typically used by attackers to gather information with great success. An understanding of the data provided by these sources can also afford decision makers the opportunity to set priorities more effectively. Through the use of an adapted Joint Directors of Laboratories (JDL) fusion model, an experimental system was implemented that visualized the potential that open source intelligence could have on cyber situational awareness. Datasets used in the validation of the model contained information obtained from eight different data sources over a two year period with a focus on the South African .co.za sub domain. Over a million infrastructure devices were examined in this study along with information pertaining to a potential 88 million vulnerabilities on these devices. During the examination of data sources, a severe lack of information regarding the human aspect in cyber security was identified that led to the creation of a novel Personally Identifiable Information detection sensor (PII). The resultant two million records pertaining to PII in the South African domain were incorporated into the data fusion experiment for processing. The results of this processing are discussed in the three case studies. The results offered in this study aim to highlight how data fusion and effective visualization can serve to move national cyber security from a primarily reactive undertaking to a more pro-active model

    Academic Libraries

    Get PDF
    As we begin to fundamentally redefine our world, informed through the Fourth Industrial Revolution (4IR) lens, entire industries are gearing up for this disruptive event. Library practices have been no exception. With the advent of advanced digital technology, knowledge is becoming more readily accessible. This book focuses on how libraries need to respond, adapt, and transform to become meaningful spaces in our rapidly changing 21st century, within the 4IR and coupled with the restrictions of the pandemic. Tracing the evolution of technology over the centuries, the changing role of the library as a response to disruptions is discussed

    Stepping Up the Cybersecurity Game: Protecting Online Services from Malicious Activity

    Get PDF
    The rise in popularity of online services such as social networks,web-based emails, and blogs has made them a popular platform for attackers.Cybercriminals leverage such services to spread spam, malware, and stealpersonal information from their victims.In a typical cybercriminal operation, miscreants first infect their victims' machines with malicious software and have themjoin a botnet, which is a network of compromised computers. In the second step,the infected machines are often leveraged to connect to legitimate onlineservices and perform malicious activities.As a consequence, online services receive activity from both legitimate and malicious users. However, while legitimate users use these services for thepurposes they were designed for, malicious parties exploit them for theirillegal actions, which are often linked to an economic gain. In this thesis, I showthat the way in which malicious users and legitimate ones interact with Internetservices presents differences. I then develop mitigation techniques thatleverage such differences to detect and block malicious parties that misuseInternet services.As examples of this research approach, I first study the problem of spammingbotnets, which are misused to send hundreds of millions of spam emails tomailservers spread across the globe. I show that botmasters typically split alist of victim email addresses among their bots, and that it is possible toidentify bots belonging to the same botnet by enumerating the mailservers thatare contacted by IP addresses over time. I developed a system, calledBotMagnifier, which learns the set of mailservers contacted by the bots belongingto a certain botnet, and finds more bots belonging to that same botnet.I then study the problem of misused accounts on online social networks. I firstlook at the problem of fake accounts that are set up by cybercriminals to spreadmalicious content. I study the modus operandi of the cybercriminalscontrolling such accounts, and I then develop a system to automatically flag asocial network accounts as fake. I then look at the problem of legitimateaccounts getting compromised by miscreants, and I present COMPA, a system thatlearns the typical habits of social network users and considers messages thatdeviate from the learned behavior as possible compromises. As a last example, I present EvilCohort, a system that detects communities ofonline accounts that are accessed by the same botnet. EvilCohort works byclustering together accounts that are accessed by a common set of IP addresses,and can work on any online service that requires the use of accounts (socialnetworks, web-based emails, blogs, etc.)

    Cyber defensive capacity and capability::A perspective from the financial sector of a small state

    Get PDF
    This thesis explores ways in which the financial sectors of small states are able todefend themselves against ever-growing cyber threats, as well as ways these states can improve their cyber defense capability in order to withstand current andfuture attacks. To date, the context of small states in general is understudied. This study presents the challenges faced by financial sectors in small states with regard to withstanding cyberattacks. This study applies a mixed method approach through the use of various surveys, brainstorming sessions with financial sector focus groups, interviews with critical infrastructure stakeholders, a literature review, a comparative analysis of secondary data and a theoretical narrative review. The findings suggest that, for the Aruban financial sector, compliance is important, as with minimal drivers, precautionary behavior is significant. Countermeasures of formal, informal, and technical controls need to be in place. This study indicates the view that defending a small state such as Aruba is challenging, yet enough economic indicators indicate it not being outside the realm of possibility. On a theoretical level, this thesis proposes a conceptual “whole-of-cyber” model inspired by military science and the VSM (Viable Systems Model). The concept of fighting power components and governance S4 function form cyber defensive capacity’s shield and capability. The “whole-of-cyber” approach may be a good way to compensate for the lack of resources of small states. Collaboration may be an only out, as the fastest-growing need will be for advanced IT skillsets
    corecore