37,562 research outputs found

    Media Flow Rate Allocation in Multipath Networks

    Get PDF
    We address the problem of joint path selection and video source rate allocation in multipath streaming in order to optimize a media specific quality of service. An optimization problem is proposed, which aims at minimizing a video distortion metric based on sequence-dependent parameters, and transmission channel characteristics, for a given network infrastructure.An in-depth analysis of the media distortion evolution allows us to define a low complexity algorithm for an optimal rate allocation in multipath network scenarios. In particular, we show that a greedy allocation of rate along paths with increasing error probability leads to an optimal solution. We argue that a network path shall not be chosen for transmission, unless all other available paths with lower error probability have been chosen. Moreover, the chosen paths should be used at their maximum available end-to-end bandwidth. Simulation results show that the optimal rate allocation carefully trades off total encoding/transmission rate, with the end-to-end transmission error probability and the number of chosen paths. In many cases, the optimal rate allocation provides more than 2

    Downlink Video Streaming for Users Non-Equidistant from Base Station

    Get PDF
    We consider multiuser video transmission for users that are non-equidistantly positioned from base station. We propose a greedy algorithm for video streaming in a wireless system with capacity achieving channel coding, that implements the cross-layer principle by partially separating the physical and the application layer. In such a system the parameters at the physical layer are dependent on the packet length and the conditions in the wireless channel and the parameters at the application layer are dependent on the reduction of the expected distortion assuming no packet errors in the system. We also address the fairness in the multiuser video system with non-equidistantly positioned users. Our fairness algorithm is based on modified opportunistic round robin scheduling. We evaluate the performance of the proposed algorithms by simulating the transmission of H.264/AVC video signals in a TDMA wireless system

    Multi-View Video Packet Scheduling

    Full text link
    In multiview applications, multiple cameras acquire the same scene from different viewpoints and generally produce correlated video streams. This results in large amounts of highly redundant data. In order to save resources, it is critical to handle properly this correlation during encoding and transmission of the multiview data. In this work, we propose a correlation-aware packet scheduling algorithm for multi-camera networks, where information from all cameras are transmitted over a bottleneck channel to clients that reconstruct the multiview images. The scheduling algorithm relies on a new rate-distortion model that captures the importance of each view in the scene reconstruction. We propose a problem formulation for the optimization of the packet scheduling policies, which adapt to variations in the scene content. Then, we design a low complexity scheduling algorithm based on a trellis search that selects the subset of candidate packets to be transmitted towards effective multiview reconstruction at clients. Extensive simulation results confirm the gain of our scheduling algorithm when inter-source correlation information is used in the scheduler, compared to scheduling policies with no information about the correlation or non-adaptive scheduling policies. We finally show that increasing the optimization horizon in the packet scheduling algorithm improves the transmission performance, especially in scenarios where the level of correlation rapidly varies with time
    corecore