82,403 research outputs found

    Average Stopping Set Weight Distribution of Redundant Random Matrix Ensembles

    Full text link
    In this paper, redundant random matrix ensembles (abbreviated as redundant random ensembles) are defined and their stopping set (SS) weight distributions are analyzed. A redundant random ensemble consists of a set of binary matrices with linearly dependent rows. These linearly dependent rows (redundant rows) significantly reduce the number of stopping sets of small size. An upper and lower bound on the average SS weight distribution of the redundant random ensembles are shown. From these bounds, the trade-off between the number of redundant rows (corresponding to decoding complexity of BP on BEC) and the critical exponent of the asymptotic growth rate of SS weight distribution (corresponding to decoding performance) can be derived. It is shown that, in some cases, a dense matrix with linearly dependent rows yields asymptotically (i.e., in the regime of small erasure probability) better performance than regular LDPC matrices with comparable parameters.Comment: 14 pages, 7 figures, Conference version to appear at the 2007 IEEE International Symposium on Information Theory, Nice, France, June 200

    Parsing a sequence of qubits

    Full text link
    We develop a theoretical framework for frame synchronization, also known as block synchronization, in the quantum domain which makes it possible to attach classical and quantum metadata to quantum information over a noisy channel even when the information source and sink are frame-wise asynchronous. This eliminates the need of frame synchronization at the hardware level and allows for parsing qubit sequences during quantum information processing. Our framework exploits binary constant-weight codes that are self-synchronizing. Possible applications may include asynchronous quantum communication such as a self-synchronizing quantum network where one can hop into the channel at any time, catch the next coming quantum information with a label indicating the sender, and reply by routing her quantum information with control qubits for quantum switches all without assuming prior frame synchronization between users.Comment: 11 pages, 2 figures, 1 table. Final accepted version for publication in the IEEE Transactions on Information Theor

    Reed-Muller codes for random erasures and errors

    Full text link
    This paper studies the parameters for which Reed-Muller (RM) codes over GF(2)GF(2) can correct random erasures and random errors with high probability, and in particular when can they achieve capacity for these two classical channels. Necessarily, the paper also studies properties of evaluations of multi-variate GF(2)GF(2) polynomials on random sets of inputs. For erasures, we prove that RM codes achieve capacity both for very high rate and very low rate regimes. For errors, we prove that RM codes achieve capacity for very low rate regimes, and for very high rates, we show that they can uniquely decode at about square root of the number of errors at capacity. The proofs of these four results are based on different techniques, which we find interesting in their own right. In particular, we study the following questions about E(m,r)E(m,r), the matrix whose rows are truth tables of all monomials of degree ≤r\leq r in mm variables. What is the most (resp. least) number of random columns in E(m,r)E(m,r) that define a submatrix having full column rank (resp. full row rank) with high probability? We obtain tight bounds for very small (resp. very large) degrees rr, which we use to show that RM codes achieve capacity for erasures in these regimes. Our decoding from random errors follows from the following novel reduction. For every linear code CC of sufficiently high rate we construct a new code C′C', also of very high rate, such that for every subset SS of coordinates, if CC can recover from erasures in SS, then C′C' can recover from errors in SS. Specializing this to RM codes and using our results for erasures imply our result on unique decoding of RM codes at high rate. Finally, two of our capacity achieving results require tight bounds on the weight distribution of RM codes. We obtain such bounds extending the recent \cite{KLP} bounds from constant degree to linear degree polynomials
    • …
    corecore