2,727 research outputs found

    Bayesian nonparametrics for Sparse Dynamic Networks

    Full text link
    We propose a Bayesian nonparametric prior for time-varying networks. To each node of the network is associated a positive parameter, modeling the sociability of that node. Sociabilities are assumed to evolve over time, and are modeled via a dynamic point process model. The model is able to (a) capture smooth evolution of the interaction between nodes, allowing edges to appear/disappear over time (b) capture long term evolution of the sociabilities of the nodes (c) and yield sparse graphs, where the number of edges grows subquadratically with the number of nodes. The evolution of the sociabilities is described by a tractable time-varying gamma process. We provide some theoretical insights into the model and apply it to three real world datasets.Comment: 10 pages, 8 figure

    Mixed membership stochastic blockmodels

    Full text link
    Observations consisting of measurements on relationships for pairs of objects arise in many settings, such as protein interaction and gene regulatory networks, collections of author-recipient email, and social networks. Analyzing such data with probabilisic models can be delicate because the simple exchangeability assumptions underlying many boilerplate models no longer hold. In this paper, we describe a latent variable model of such data called the mixed membership stochastic blockmodel. This model extends blockmodels for relational data to ones which capture mixed membership latent relational structure, thus providing an object-specific low-dimensional representation. We develop a general variational inference algorithm for fast approximate posterior inference. We explore applications to social and protein interaction networks.Comment: 46 pages, 14 figures, 3 table

    When does centrality matter? Scientific productivity and the moderating role of research specialization and cross-community ties

    Get PDF
    The present study addresses the ongoing debate concerning academic scientific productivity. Specifically, given the increasing number of collaborations in academia and the crucial role networks play in knowledge creation, we investigate the extent to which building social capital within the academic community represents a valuable resource for a scientist's knowledge-creation process. We measure the social capital in terms of structural position within the academic collaborative network. Furthermore, we analyse the extent to which an academic scientist's research specialization and ties that cross-community boundaries act as moderators of the aforementioned relationship. Empirical results derived from an analysis of an Italian academic community from 2001 to 2008 suggest academic scientists that build social capital by occupying central positions in the community outperform their more isolated colleagues. However, scientific productivity declines beyond a certain threshold value of centrality, hence revealing the existence of an inverted U-shaped relationship. This relationship is negatively moderated by the extent to which an academic focuses research activities in few scientific knowledge domains, whereas it is positively moderated by the number of cross-community ties established
    • …
    corecore