656 research outputs found

    JPL Quarterly Technical Review, Volume 2, Number 4

    Get PDF
    Quarterly report of JPL research and developmen

    Comparison of Four Numerical Methods of EHL Modeling

    Get PDF

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    From Benchtop to Beside: Patient-specific Outcomes Explained by Invitro Experiment

    Get PDF
    Study: Recent analyses show that females have higher early postoperative (PO) mortality and right ventricular failure (RVF) than males after left ventricular assist device (LVAD) implantation; and that this association is partially mediated by smaller LV size in females. Benchtop experiments allow us to investigate patient-specific (PS) characteristics in a reproducible way given the fact that the PS anatomy and physiology is mimicked accurately. With multiple heart models of varying LV size, we can directly study the individual effects of titrating the LVAD speed and the resulting bi-ventricular volumes, shedding light on the interplay between LV and RV as well as resulting inter-ventricular septum (IVS) positions, which may cause the different outcomes pertaining to sex. Methods: In vitro, we studied the impact of the heart size to IVS position using two smaller and two larger sized PS silicone heart phantoms derived from clinical CT images (Fig. 1A). With ultrasound crystals that were integrated on a placeholder inflow cannula, the IVS position was measured during LV and RV volume changes (dV) mimicking varying ventricular loading states (Fig. 1B). Figure 1 A Two small (blue) and two large PS heart phantoms (orange) on B benchtop. C Median septum curvature results. LVEDD/LVV/RVV: LV enddiastolic diameter/LV and RV volume. Results: Going from small to large dV, at zero curvature, the septum starts to shift towards the left; for smaller hearts at dV = -40 mL and for larger hearts at dV = -50 mL (Fig. 1C). This result indicates that smaller hearts are more prone to an IVS shift to the left than larger hearts. We conclude that smaller LV size may therefore mediate increased early PO LVAD mortality and RVF observed in females compared to males. Novel 3D silicone printing technology enables us to study accurate, PS heart models across a heterogeneous patient population. PS relationships can be studied simultaneously to clinical assessments and support the decision-making prior to LVAD implantation

    Proceedings of 16th Nordic Symposium on Tribology - NORDTRIB 2014

    Get PDF

    Bibliography of Lewis Research Center technical publications announced in 1987

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1987. All the publications were announced in the 1987 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems

    Full text link
    Executive Summary Serious challenges must be faced in this century as the world seeks to meet global energy needs and at the same time reduce emissions of greenhouse gases to the atmosphere. Even with a growing energy supply from alternative sources, fossil carbon resources will remain in heavy use and will generate large volumes of carbon dioxide (CO2). To reduce the atmospheric impact of this fossil energy use, it is necessary to capture and sequester a substantial fraction of the produced CO2. Subsurface geologic formations offer a potential location for long-term storage of the requisite large volumes of CO2. Nuclear energy resources could also reduce use of carbon-based fuels and CO2 generation, especially if nuclear energy capacity is greatly increased. Nuclear power generation results in spent nuclear fuel and other radioactive materials that also must be sequestered underground. Hence, regardless of technology choices, there will be major increases in the demand to store materials underground in large quantities, for long times, and with increasing efficiency and safety margins. Rock formations are composed of complex natural materials and were not designed by nature as storage vaults. If new energy technologies are to be developed in a timely fashion while ensuring public safety, fundamental improvements are needed in our understanding of how these rock formations will perform as storage systems. This report describes the scientific challenges associated with geologic sequestration of large volumes of carbon dioxide for hundreds of years, and also addresses the geoscientific aspects of safely storing nuclear waste materials for thousands to hundreds of thousands of years. The fundamental crosscutting challenge is to understand the properties and processes associated with complex and heterogeneous subsurface mineral assemblages comprising porous rock formations, and the equally complex fluids that may reside within and flow through those formations. The relevant physical and chemical interactions occur on spatial scales that range from those of atoms, molecules, and mineral surfaces, up to tens of kilometers, and time scales that range from picoseconds to millennia and longer. To predict with confidence the transport and fate of either CO2 or the various components of stored nuclear materials, we need to learn to better describe fundamental atomic, molecular, and biological processes, and to translate those microscale descriptions into macroscopic properties of materials and fluids. We also need fundamental advances in the ability to simulate multiscale systems as they are perturbed during sequestration activities and for very long times afterward, and to monitor those systems in real time with increasing spatial and temporal resolution. The ultimate objective is to predict accurately the performance of the subsurface fluid-rock storage systems, and to verify enough of the predicted performance with direct observations to build confidence that the systems will meet their design targets as well as environmental protection goals. The report summarizes the results and conclusions of a Workshop on Basic Research Needs for Geosciences held in February 2007. Five panels met, resulting in four Panel Reports, three Grand Challenges, six Priority Research Directions, and three Crosscutting Research Issues. The Grand Challenges differ from the Priority Research Directions in that the former describe broader, long-term objectives while the latter are more focused

    NREL Photovoltaic Program FY 1995 annual report

    Full text link

    Numerical modelling of additive manufacturing process for stainless steel tension testing samples

    Get PDF
    Nowadays additive manufacturing (AM) technologies including 3D printing grow rapidly and they are expected to replace conventional subtractive manufacturing technologies to some extents. During a selective laser melting (SLM) process as one of popular AM technologies for metals, large amount of heats is required to melt metal powders, and this leads to distortions and/or shrinkages of additively manufactured parts. It is useful to predict the 3D printed parts to control unwanted distortions and shrinkages before their 3D printing. This study develops a two-phase numerical modelling and simulation process of AM process for 17-4PH stainless steel and it considers the importance of post-processing and the need for calibration to achieve a high-quality printing at the end. By using this proposed AM modelling and simulation process, optimal process parameters, material properties, and topology can be obtained to ensure a part 3D printed successfully
    corecore