3,122 research outputs found

    The BioExcel methodology for developing dynamic, scalable, reliable and portable computational biomolecular workflows

    Get PDF
    Developing complex biomolecular workflows is not always straightforward. It requires tedious developments to enable the interoperability between the different biomolecular simulation and analysis tools. Moreover, the need to execute the pipelines on distributed systems increases the complexity of these developments. To address these issues, we propose a methodology to simplify the implementation of these workflows on HPC infrastructures. It combines a library, the BioExcel Building Blocks (BioBBs), that allows scientists to implement biomolecular pipelines as Python scripts, and the PyCOMPSs programming framework which allows to easily convert Python scripts into task-based parallel workflows executed in distributed computing systems such as HPC clusters, clouds, containerized platforms, etc. Using this methodology, we have implemented a set of computational molecular workflows and we have performed several experiments to validate its portability, scalability, reliability and malleability.This work has been supported by Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 under contract PID2019-107255GB-C21, by the Generalitat de Catalunya under contracts 2017-SGR-01414 and 2017-SGR1110, by the European Commission through the BioExcel Center of Excellence (Horizon 2020 Framework program) under contracts 823830, and 675728. This work is also partially supported by the CECH project which has been co-funded with 50% by the European Regional Development Fund under the framework of the ERFD Operative Programme for Catalunya 2014-2020, with a grant of 1.527.637,88€.Peer ReviewedPostprint (author's final draft

    A lightweight secure adaptive approach for internet-of-medical-things healthcare applications in edge-cloud-based networks

    Get PDF
    Mobile-cloud-based healthcare applications are increasingly growing in practice. For instance, healthcare, transport, and shopping applications are designed on the basis of the mobile cloud. For executing mobile-cloud applications, offloading and scheduling are fundamental mechanisms. However, mobile healthcare workflow applications with these methods are widely ignored, demanding applications in various aspects for healthcare monitoring, live healthcare service, and biomedical firms. However, these offloading and scheduling schemes do not consider the workflow applications' execution in their models. This paper develops a lightweight secure efficient offloading scheduling (LSEOS) metaheuristic model. LSEOS consists of light weight, and secure offloading and scheduling methods whose execution offloading delay is less than that of existing methods. The objective of LSEOS is to run workflow applications on other nodes and minimize the delay and security risk in the system. The metaheuristic LSEOS consists of the following components: adaptive deadlines, sorting, and scheduling with neighborhood search schemes. Compared to current strategies for delay and security validation in a model, computational results revealed that the LSEOS outperformed all available offloading and scheduling methods for process applications by 10% security ratio and by 29% regarding delays

    HealthPartners: Consumer-Focused Mission and Collaborative Approach Support Ambitious Performance Improvement Agenda

    Get PDF
    Presents a case study of a nonprofit healthcare organization that exhibits the six attributes of an ideal healthcare delivery system as defined by the Fund, including information continuity, care coordination and transitions, and system accountability
    • …
    corecore