2,453 research outputs found

    Rateless Codes with Progressive Recovery for Layered Multimedia Delivery

    Full text link
    This paper proposes a novel approach, based on unequal error protection, to enhance rateless codes with progressive recovery for layered multimedia delivery. With a parallel encoding structure, the proposed Progressive Rateless codes (PRC) assign unequal redundancy to each layer in accordance with their importance. Each output symbol contains information from all layers, and thus the stream layers can be recovered progressively at the expected received ratios of output symbols. Furthermore, the dependency between layers is naturally considered. The performance of the PRC is evaluated and compared with some related UEP approaches. Results show that our PRC approach provides better recovery performance with lower overhead both theoretically and numerically

    Cross-layer optimization of unequal protected layered video over hierarchical modulation

    Get PDF
    Abstract-unequal protection mechanisms have been proposed at several layers in order to improve the reliability of multimedia contents, especially for video data. The paper aims at implementing a multi-layer unequal protection scheme, which is based on a Physical-Transport-Application cross-layer design. Hierarchical modulation, in the physical layer, has been demonstrated to increase the overall user capacity of a wireless communications. On the other hand, unequal erasure protection codes at the transport layer turned out to be an efficient method to protect video data generated by the application layer by exploiting their intrinsic properties. In this paper, the two techniques are jointly optimized in order to enable recovering lost data in case the protection is performed separately. We show that the cross-layer design proposed herein outperforms the performance of hierarchical modulation and unequal erasure codes taken independently

    Inter-session Network Coding for Transmitting Multiple Layered Streams over Single-hop Wireless Networks

    Full text link
    This paper studies the problem of transmitting multiple independent layered video streams over single-hop wireless networks using network coding (NC). We combine feedback-free random linear NC (RLNC) with unequal error protection (UEP) and our goal is to investigate the benefits of coding across streams, i.e. inter session NC. To this end, we present a transmission scheme that in addition to mixing packets of different layers of each stream (intra-session NC), mixes packets of different streams as well. Then, we propose the analytical formulation of the layer decoding probabilities for each user and utilize it to define a theoretical performance metric. Assessing this performance metric under various scenarios, it is observed that inter-session NC improves the trade-off among the performances of users. Furthermore, the analytical results show that the throughput gain of inter-session NC over intra-session NC increases with the number of independent streams and also by increasing packet error rate, but degrades as network becomes more heterogeneous.Comment: Accepted to be presented at 2014 IEEE Information Theory Workshop (ITW), 5 pages, 4 figure

    Layer-Aware Forward Error Correction for Mobile Broadcast of Layered Media

    Full text link
    The bitstream structure of layered media formats such as scalable video coding (SVC) or multiview video coding (MVC) opens up new opportunities for their distribution in Mobile TV services. Features like graceful degradation or the support of the 3-D experience in a backwards-compatible way are enabled. The reason is that parts of the media stream are more important than others with each part itself providing a useful media representation. Typically, the decoding of some parts of the bitstream is only possible, if the corresponding more important parts are correctly received. Hence, unequal error protection (UEP) can be applied protecting important parts of the bitstream more strongly than others. Mobile broadcast systems typically apply forward error correction (FEC) on upper layers to cope with transmission errors, which the physical layer FEC cannot correct. Today's FEC solutions are optimized to transmit single layer video. The exploitation of the dependencies in layered media codecs for UEP using FEC is the subject of this paper. The presented scheme, which is called layer-aware FEC (LA-FEC), incorporates the dependencies of the layered video codec into the FEC code construction. A combinatorial analysis is derived to show the potential theoretical gain in terms of FEC decoding probability and video quality. Furthermore, the implementation of LA-FEC as an extension of the Raptor FEC and the related signaling are described. The performance of layer-aware Raptor code with SVC is shown by experimental results in a DVB-H environment showing significant improvements achieved by LA-FEC. © 2011 IEEE.Hellge, C.; Gómez Barquero, D.; Schierl, T.; Wiegand, T. (2011). Layer-Aware Forward Error Correction for Mobile Broadcast of Layered Media. IEEE Transactions on Multimedia. 13(3):551-562. doi:10.1109/TMM.2011.2129499S55156213

    Historical information aware unequal error protection of scalable HEVC/H.265 streaming over free space optical channels

    No full text
    Free space optical (FSO) systems are capable of supporting high data rates between fixed points in the context of flawless video communications. Layered video coding facilitates the creation of different-resolution subset layers for variablethroughput transmission scenarios. In this paper, we propose Historical information Aware Unequal Error Protection (HAUEP) for the scalable high efficiency video codec (SHVC) used for streaming over FSO channels. Specifically, the objective function (OF) of the current video frame is designed based on historical information of its dependent frames. By optimizing this OF, specific subset layers may be selected in conjunction with carefully selected forward error correction (FEC) coding rates, where the expected video distortion is minimized and the required bitrate is reduced under the constraint of a specific throughput. Our simulation results show that the proposed system outperforms the traditional equal error protection (EEP) scheme by about 4.5 dB of Eb=N0 at a peak signal-to-noise ratio (PSNR) of 33 dB. From a throughput-oriented perspective, HA-UEP is capable of reducing the throughput to about 30% compared to that of the EEP benchmarker, while achieving an Eb=N0 gain of 4.5 dB
    corecore