34 research outputs found

    Aspects Of Efficiency Enhancement In Reflectarrays With Analytical Investigation And Accurate Measurement

    Get PDF
    This paper presents a thorough review of the techniques involved in the enhancement of the efficiency performance of the reflectarray antenna. The effect of the selection of a suitable patch element or a proper feeding mechanism on efficiency improvement is studied in detail. Reflectarray loss quantification is examined in relation to the design techniques involved in the efficiency improvement. A low loss patch element with a wide reflection phase range and a properly illuminated reflectarray aperture are supposed to offer high efficiency performance. Additionally, the placement, the orientation and the position of a patch element on the reflectarray surface can also affect its efficiency performance. Mathematical equations were developed to estimate the efficiencies of circular and square aperture reflectarray antennas by considering their feed footprints. Moreover, a step by step practical method of predicting and measuring the total efficiency of a reflectarray antenna is presented. The two selected apertures of the reflectarray consisting of the square patch element configuration are fabricated and measured at a frequency of 26 GHz. Their measured efficiencies have been estimated using the derived equations, and the results were compared and validated using the efficiencies obtained by the conventional gain-directivity relation

    Reconfigurable Reflectarray Antennas with Bandwidth Enhancement for High Gain, Beam-Steering Applications

    Get PDF
    Reconfigurable reflectarrays are a class of antennas that combine the advantages of traditional parabolic antennas and phased array antennas. Chapter 1 discusses the basic operational theory of reflectarrays and their design. A review of previous research and the current status is also presented. Furthermore the inherent advantages and disadvantages of the reflectarray topography are presented. In chapter 2, a BST-integrated reflectarray operating at Ka band is presented. Due to the monolithic integration of the tuning element, this design is then extended to V band where a novel interdigital gap configuration is utilized. Finally to overcome loss and phase limitations of the single resonant design, a BST-integrated, dual-resonance unit cell operating at Ka band is designed. While the losses are still high, a 360° phase range is demonstrated. In chapter 3, the operational theory of dual-resonant array elements is introduced utilizing Q theory. An equivalent circuit is developed and used to demonstrate design tradeoffs. Using this theory the design procedure of a varactor tuned dual-resonant unit cell operating at X-band is presented. Detailed analysis of the design is performed by full-wave simulations and verified via measurements. In chapter 4, the array performance of the dual-resonance unit cell is analyzed. The effects of varying angles of incidence on the array element are studied using Floquet simulations. The beam scanning, cross-polarization and bandwidth performance of a 7 x 7 element reflectarray is analyzed using full-wave simulations and verified via measurements. In chapter 5 a loss analysis of the dual-resonant reflectarray element is performed. Major sources of loss are identified utilizing full-wave simulations before an equivalent circuit is utilized to optimize the loss performance while maintaining a full phase range and improved bandwidth performance. Finally the dual-resonance unit cell is modified to support two linear polarizations. Overall, the operational and design theory of dual resonant reflectarray unit cells using Q theory is developed. A valuable equivalent circuit is developed and used to aid in array element design as well as optimize the loss and bandwidth performance. The proposed theoretical models provide valuable physical insight through the use of Q theory to greatly aid in reflectarray design

    Antennas and Propagation

    Get PDF
    This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Multi-band reflectarray antennas in Ku and THz frequency bands

    Get PDF
    Printed reflectarrays are low-cost, low-profile high gain antennas demonstrating distinctive advantages over conventional parabolic reflectors and phased-arrays. The flat, low weight reflecting surface of a reflectarray makes it an attractive alternative with respect to bulky parabolic reflectors specially for space and satellite systems. As compared to high-cost phased-array antennas, with incorporation of solid state devices, reflectarrays are able to demonstrate electronic beam scanning in a very low-cost way. A distinctive advantage of a reflectarray antenna lies in its potential to be readily designed as a multi-band antenna which demonstrates independent performance at several frequencies. A characteristic that is difficult to achieve using conventional parabolic reflectors. The aim of this thesis is to present low-cost, simple, multi-band printed reflectarray antennas in Ku and THz frequency bands. In Ku band we present a dual-band reflectarray performing at 12 and 14 GHz and a quad-band reflectarray antenna performing at 12, 13, 14 and 15.5 GHz. The presented prototypes benefit from the advantage of having a single-layer structure which reduces the design complexity as well as the fabrication cost. In addition, multi-band reflectarrays are able to perform at any polarization due to the dual-linear polarized design of their unit-cells. Furthermore, the design of the unit-cell is such that, at each frequency, the phase response depends on only one parameter of the cell. This advantage eliminates the need for time consuming optimizations. Based on proposed unit-cells dual-band and quad-band reflectarrays with arbitrary beam direction versus frequency have been simulated, fabricated and measured. Simulation and measurement results as well demonstrate the satisfactory independent performance of the prototypes at each intended frequency. In THz region, for the first time we present a tri-band unit-cell based on which reflectarray prototypes performing at the three frequencies 0.7, 1.0 and 1.5 THz, are designed. The presented reflectarrays possess all the advantages of those designed for Ku band with the additional advantage of having high resistivity silicon as the substrate thanks to a sophisticated fabrication process. The use of silicon as substrate is a big advantage since it facilitates the integration of solid state devices for reconfigurability. Based on the proposed unit-cell reflectarray samples with arbitrary independent performance at each frequency are designed, simulated, fabricated and measured. Measurement results obtained using a THz-TDS (Terahertz Time-Domain Spectroscopy) measurement system, demonstrate the satisfactory independent performance of the reflectarray samples at each frequency. This thesis also presents a dual-band, dual-polarized reconfigurable unit-cell for beam-scanning reflectarray operating at 12 and 14 GHz. The cell however suffers from high-cross-polarization level. A chessboard cell arrangement is proposed to mitigate the high cross-polarization level at the reflectarray far-field region. Simulation results show the effectiveness of the chessboard arrangement in eliminating the cross-polarization allowing the design of a low-cross polarization reconfigurable reflectarray antenna out of a unit-cell with high cross-polarization level. Finally, the thesis presents the concept of a versatile flat prism which is a reflectarray with a pre-designed frequency-scanning behaviour. The limitations and challenges as well as solutions for implementation of such a device are presented and discussed

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Application of transmitarray antennas for indoor mapping at millimeter-waves

    Get PDF
    Millimeter-waves are expected to play a key role in next 5G scenario due to the availability of a large clean unlicensed bandwidth at 60 GHz and the possibility to realize packed antenna arrays, with a consequent increase of the communication capacity and the introduction of new functionalities, such as high-definition localization and personal radar for automatic environment mapping. In this paper we propose the adoption of millimeter-wave transmitarrays for personal radar applications and we investigate the impact of the radiation pattern characteristics on the map reconstruction accuracy, by analysing how the number of array elements, of quantization bits and the focal distance affect the environment reconstruction performance

    Bilgi toplumu teknolojileri için anten sistemleri ve algılayıcılar

    Get PDF
    TÜBİTAK EEEAG01.10.2010Bu proje kapsamında, özellikle milimetre-dalga frekanslarında çalışan yeniden şekillendirilebilir anten, elektronik taramalı dizi anten ve yansıtıcı dizi anten tasarımı, üretimi ve ölçümleri yapılmıştır. Yeniden şekillendirilebilirlik özelliği için farklı teknolojiler kullanılmıştır. Huzmesi yönlendirilebilen sur biçimli mikroşerit yürüyen dalga anten dizisi X-bant uygulamalarında kullanılmak üzere tasarlamış, üretilmiş ve ölçülmüştür. Antenin ana huzmesinin istenilen yöne elektronik olarak döndürülebilmesini sağlayabilmek için mikroşerit hat üzerinde gerekli faz değişimini sağlayacak varaktör diyotlar kullanılmıştır. Yapılan EM benzetim ve ölçümler sonucu sur biçimli anten dizisinde, ana huzmenin diyot kontrolü ile tasarlandığı gibi 10 lik bir açı taraması yapabildiği gösterilmiştir. Bu kavram kanıtlaması şeklinde bir çalışmadır; huzmenin daha büyük açı aralığında tarama yapması için tasarımda yapılması gereken değişiklikler belirtilmiştir. MM-Dalga sabit genişlikli ve doğrusal sönümlenen yarık antenler tasarlanıp, üretilmiş ve antenin şeklinin, optik uyarımla bu iki yapı arasında değiştirilmesinin sağlanması durumunda ışıma örüntüsünün değiştirilebileceği gösterilmiştir. Proje kapsamında gerçekleştirilen bir diğer çalışmada da K ve Ka bantlarında bağımsız çalışabilen, RF MEMS anahtarlarla huzmesi elektronik olarak döndürülebilen dairesel polarizasyonlu yansıtıcı dizi anten tasarlanmış, üretilmiş ve ölçülmüştür. Çift frekanslı (24.4 GHz ve 35.5 GHz) dizi iç içe geçmiş farklı boyutlarda iki ayrık-halka dizisi şeklinde tasarlanmıştır. Huzme döndürme amacıyla her bir ayrık halkanın açısal konumunu RF MEMS anahtarlarla ayarlayarak, dairesel polarizasyonlu dalgaların fazları kontrol edilmektedir. Anten ODTÜ MEMS merkezinde geliştirilen yüzey mikro-işleme süreciyle üretilmiştir. Işıma örüntüleri ölçülmüş ve benzetim sonuçlarıyla karşılaştırılmıştır. Ölçümlerle, ana huzmenin, tasarlandığı gibi, Ka bandında 35°‟ye, K bandında 24°‟ye döndürülebildiği gösterilmiştir. Proje çalışmalarından sur biçimli mikroşerit anten dizisiyle ilgili hazırlanan makale Microwave and Optical Technology Letters adlı dergide yayınlanmak üzere kabul edilmiştir. Yansıtıcı dizi antenle ilgili makale de hazırlık sürecindedir. Saygın konferanslarda yedi bildiri sunulmuştur. Ayrıca, proje kapsamında üç yüksek lisans tez çalışması tamamlanmıştır.In this project, reconfigurable antenna, beam steering array and reflectarray have been designed, produced and measured, especially in mm-wave frequencies. To provide reconfigurability, different technologies have been considered. X-band electronically scanning meanderline microstrip traveling wave antenna array has been designed, produced and measured. To rotate the antenna beam to the desired direction, microstrip meander line has been loaded by varactor diodes that provide required phase shift values. EM simulations and rdiation pattern measurements of the meanderline antenna have demonstrated that the antenna has the capability to scan 10 with the control of varactors as designed. This is a proof-of-concept type study; alternative configurations to increase the scan range have also been discussed. MM-wave tapered slot antennas with a constant width and linear taper have been designed, produced and measured. It has been demonstrated that if the shape of the tapered slot antenna can be changed between constant width and linear taper structures by means of optical excitation, radiation pattern reconfigurability can be obtained. In another study accomplished in this project, electronically scanning circularly polarized reflectarray working independently in K and Ka bands has been designed, produced and measured. Dual band (24.4 GHz and 35.5 GHz) reflectarray has been designed as an interlaced array of split rings of two different sizes. In order to steer the beam, the phase of the incident circularly polarized wave is controlled by RF MEMS switches that modify the angular orientation of split-rings individually. The antenna has fabricated by using surface micromachining process developed in METU MEMS Center. Radiation patterns of the antenna are measured and compared with the simulations. It has been shown that the reflectarray is capable of beam switching to 35° in Ka band, 24° in K band as required. One journal paper on meanderline antenna has been accepted to be published in Microwave and Optical Technology Letters. Preparation of manuscript on reflectarray is under progress. Seven conference papers have been presented in well known Conferences. Furthermore, three Master Thesis studies have been accomplished during the project

    HIGH-PERFORMANCE PERIODIC ANTENNAS WITH HIGH ASPECT RATIO VERTICAL FEATURES AND LARGE INTERCELL CAPACITANCES FOR MICROWAVE APPLICATIONS

    Get PDF
    Modern communications systems are evolving rapidly to address the demand for data exchange, a fact which imposes stringent requirements on the design process of their RF and antenna front-ends. The most crucial pressure on the antenna front-end is the need for miniaturized design solutions while maintaining the desired radiation performance. To satisfy this need, this thesis presents innovative types of periodic antennas, including electromagnetic bandgap (EBG) antennas, which are distinguished in two respects. First, the periodic cells contain thick metal traces, contrary to the conventional thin-trace cells. Second, such thick traces contain very narrow gaps with very tall sidewalls, referred to as high aspect ratio (HAR) gaps. When such cells are used in the structure of the proposed periodic antennas, the high capacitance of HAR gaps decreases the resonance frequency, mitigates conduction loss, and thus, yields considerably small high efficiency antennas. For instance, one of the sample antenna designs with only two EBG cells offers a very small XYZ volume of 0.25λ×0.28λ×0.037λ with efficiency of 83%. Also, a circularly polarized HAR EBG antenna is presented which has a footprint as small as 0.26λ×0.29λ and efficiency as high as 94%. The main analysis method developed in this thesis is a combination of numerical and mathematical analyses and is referred to as HFSS/Bloch method. The numerical part of this method is conducted using a High Frequency Structure Simulator (HFSS), and the mathematical part is based on the classic Bloch theory. The HFSS/Bloch method acts as the mainstay of the thesis and all designs are built upon the insight provided by this method. A circuit model using transmission line (TL) theory is also developed for some of the unit cells and antennas. The HFSS/Bloch perspective results in a HAR EBG TL with radiation properties, a fragment of which (2 to 6 cells) is introduced as a novel antenna, the self-excited EBG resonator antenna (SE-EBG-RA). Open (OC) and short circuited (SC) versions of this antenna are studied and the inherently smaller size of the SC version is demonstrated. Moreover, the possibility of employing the SE-EBG-RA as the element of a series-fed array structure is investigated and some sample high-efficiency, flat array antennas are rendered. A microstrip antenna is also developed, the structure of which is composed of 3×3 unit cells and shows fast-wave behaviors. Most antenna designs are resonant in nature; however, in one case, a low-profile efficient leaky-wave antenna with scanning radiation pattern is proposed. Several antenna prototypes are fabricated and tested to validate the analyses and designs. As the structures are based on tall metal traces, two relevant fabrication methods are considered, including CNC machining and deep X-ray lithography (DXRL). Hands-on experiments provide an outlook of possible future DXRL fabricated SE-EBG-RAs

    Millimeter-wave backscattering measurements with transmitarrays for personal radar applications

    Get PDF
    The concept of personal radar has recently emerged as an interesting solution for next 5G applications. In fact the high portability of massive antenna arrays at millimeter-waves enables the integration of a radar system in pocket-size devices (i.e. tablets or smartphones) and enhances the possibility to map the surrounding environment by guaranteeing accurate localization together with high-speed communication capabilities. In this paper we investigate for the first time the capability of such personal radar solution using real measured data collected at millimeter-waves as input for the mapping algorithm
    corecore