36,328 research outputs found

    The Budget-Constrained Functional Dependency

    Full text link
    Armstrong's axioms of functional dependency form a well-known logical system that captures properties of functional dependencies between sets of database attributes. This article assumes that there are costs associated with attributes and proposes an extension of Armstrong's system for reasoning about budget-constrained functional dependencies in such a setting. The main technical result of this article is the completeness theorem for the proposed logical system. Although the proposed axioms are obtained by just adding cost subscript to the original Armstrong's axioms, the proof of the completeness for the proposed system is significantly more complicated than that for the Armstrong's system

    Pattern Reification as the Basis for Description-Driven Systems

    Full text link
    One of the main factors driving object-oriented software development for information systems is the requirement for systems to be tolerant to change. To address this issue in designing systems, this paper proposes a pattern-based, object-oriented, description-driven system (DDS) architecture as an extension to the standard UML four-layer meta-model. A DDS architecture is proposed in which aspects of both static and dynamic systems behavior can be captured via descriptive models and meta-models. The proposed architecture embodies four main elements - firstly, the adoption of a multi-layered meta-modeling architecture and reflective meta-level architecture, secondly the identification of four data modeling relationships that can be made explicit such that they can be modified dynamically, thirdly the identification of five design patterns which have emerged from practice and have proved essential in providing reusable building blocks for data management, and fourthly the encoding of the structural properties of the five design patterns by means of one fundamental pattern, the Graph pattern. A practical example of this philosophy, the CRISTAL project, is used to demonstrate the use of description-driven data objects to handle system evolution.Comment: 20 pages, 10 figure

    Lambda Dependency-Based Compositional Semantics

    Full text link
    This short note presents a new formal language, lambda dependency-based compositional semantics (lambda DCS) for representing logical forms in semantic parsing. By eliminating variables and making existential quantification implicit, lambda DCS logical forms are generally more compact than those in lambda calculus

    Unsupervised Dependency Parsing: Let's Use Supervised Parsers

    Full text link
    We present a self-training approach to unsupervised dependency parsing that reuses existing supervised and unsupervised parsing algorithms. Our approach, called `iterated reranking' (IR), starts with dependency trees generated by an unsupervised parser, and iteratively improves these trees using the richer probability models used in supervised parsing that are in turn trained on these trees. Our system achieves 1.8% accuracy higher than the state-of-the-part parser of Spitkovsky et al. (2013) on the WSJ corpus.Comment: 11 page

    Factoring Predicate Argument and Scope Semantics : underspecified Semantics with LTAG

    Get PDF
    In this paper we propose a compositional semantics for lexicalized tree-adjoining grammar (LTAG). Tree-local multicomponent derivations allow separation of the semantic contribution of a lexical item into one component contributing to the predicate argument structure and a second component contributing to scope semantics. Based on this idea a syntax-semantics interface is presented where the compositional semantics depends only on the derivation structure. It is shown that the derivation structure (and indirectly the locality of derivations) allows an appropriate amount of underspecification. This is illustrated by investigating underspecified representations for quantifier scope ambiguities and related phenomena such as adjunct scope and island constraints
    • ā€¦
    corecore