39,650 research outputs found

    Dependency analysis in ontology-driven content-based systems

    Get PDF
    Ontology-driven content-based systems are content-based systems (ODCBS) that are built to provide a better access to information by semantically annotating the content using ontologies. Such systems contain ontology layer, annotation layer and content layer. These layers contain semantically interrelated and interdependent entities. Thus, a change in one layer causes many unseen and undesired changes and impacts that propagate to other entities. Before any change is implemented in the ODCBS, it is crucial to understand the impacts of the change on other ODCBS entities. However, without getting these dependent entities, to which the change propagates, it is difficult to understand and analyze the impacts of the requested changes. In this paper we formally identify and define relevant dependencies, formalizing them and present a dependency analysis algorithm. The output of the dependency analysis serves as an essential input for change impact analysis process that ensures the desired evolution of the ODCBS

    Introduction to the special issue on cross-language algorithms and applications

    Get PDF
    With the increasingly global nature of our everyday interactions, the need for multilingual technologies to support efficient and efective information access and communication cannot be overemphasized. Computational modeling of language has been the focus of Natural Language Processing, a subdiscipline of Artificial Intelligence. One of the current challenges for this discipline is to design methodologies and algorithms that are cross-language in order to create multilingual technologies rapidly. The goal of this JAIR special issue on Cross-Language Algorithms and Applications (CLAA) is to present leading research in this area, with emphasis on developing unifying themes that could lead to the development of the science of multi- and cross-lingualism. In this introduction, we provide the reader with the motivation for this special issue and summarize the contributions of the papers that have been included. The selected papers cover a broad range of cross-lingual technologies including machine translation, domain and language adaptation for sentiment analysis, cross-language lexical resources, dependency parsing, information retrieval and knowledge representation. We anticipate that this special issue will serve as an invaluable resource for researchers interested in topics of cross-lingual natural language processing.Postprint (published version

    Analyzing impacts of change operations in evolving ontologies

    Get PDF
    Ontologies evolve over time to adapt to the dynamically changing knowledge in a domain. The evolution includes addition of new entities and modification or deletion of obsolete entities. These changes could have impacts on the remaining entities and dependent systems of the ontology. In this paper, we address the impacts of changes prior to their permanent implementation. To this end, we identify possible structural and semantic impacts and propose a bottom-up change impact analysis method which contains two phases. The first phase focuses on analyzing impacts of atomic change operations and the second phase focuses on analyzing impacts of composite changes which include impact cancellation, balancing and transformation due to implementation of two or more atomic changes. This method provides crucial information on the impacts and could be used for selecting evolution strategies and conducting what-if analysis before evolving the ontologies

    Semantic modelling of learning objects and instruction

    Get PDF
    We introduce an ontology-based semantic modelling framework that addresses subject domain modelling, instruction modelling, and interoperability aspects in the development of complex reusable learning objects. Ontologies are knowledge representation frameworks, ideally suited to support knowledge-based modelling of these learning objects. We illustrate the benefits of semantic modelling for learning object assemblies within the context of standards such as SCORM Sequencing and Navigation and Learning Object Metadata

    Empirical analysis of impacts of instance-driven changes in ontologies

    Get PDF
    Changes in the characterization of instances in digital contents are one of the rationales to change or evolve ontologies which support the domain. These changes can impacts on one or more of interrelated ontologies. Before implementing changes, their impact on the target ontology, other dependent ontologies or dependent systems should be analysed. We investigate three concerns for the determination of impacts of changes in ontologies: representation of changes to ensure minimum impact, impact determination and integrity determination. Key elements of our solution are the operationalization of change operations to minimize impacts, a parameterization approach for the determination of impacts, a categorization scheme for identified impacts, and prioritization technique for change operations based on the severity of impacts

    Graph-based discovery of ontology change patterns

    Get PDF
    Ontologies can support a variety of purposes, ranging from capturing conceptual knowledge to the organisation of digital content and information. However, information systems are always subject to change and ontology change management can pose challenges. We investigate ontology change representation and discovery of change patterns. Ontology changes are formalised as graph-based change logs. We use attributed graphs, which are typed over a generic graph with node and edge attribution.We analyse ontology change logs, represented as graphs, and identify frequent change sequences. Such sequences are applied as a reference in order to discover reusable, often domain-specific and usagedriven change patterns. We describe the pattern discovery algorithms and measure their performance using experimental result

    Utilising ontology-based modelling for learning content management

    Get PDF
    Learning content management needs to support a variety of open, multi-format Web-based software applications. We propose multidimensional, model-based semantic annotation as a way to support the management of access to and change of learning content. We introduce an information architecture model as the central contribution that supports multi-layered learning content structures. We discuss interactive query access, but also change management for multi-layered learning content management. An ontology-enhanced traceability approach is the solution
    corecore