104,649 research outputs found

    Towards the n-point one-loop superstring amplitude III: One-loop correlators and their double-copy structure

    Full text link
    In this final part of a series of three papers, we will assemble supersymmetric expressions for one-loop correlators in pure-spinor superspace that are BRST invariant, local, and single valued. A key driving force in this construction is the generalization of a so far unnoticed property at tree level; the correlators have the symmetry structure akin to Lie polynomials. One-loop correlators up to seven points are presented in a variety of representations manifesting different subsets of their defining properties. These expressions are related via identities obeyed by the kinematic superfields and worldsheet functions spelled out in the first two parts of this series and reflecting a duality between the two kinds of ingredients. Interestingly, the expression for the eight-point correlator following from our method seems to capture correctly all the dependence on the worldsheet punctures but leaves undetermined the coefficient of the holomorphic Eisenstein series G4{\rm G}_4. By virtue of chiral splitting, closed-string correlators follow from the double copy of the open-string results.Comment: 77 pages, v2: published versio

    New BCJ representations for one-loop amplitudes in gauge theories and gravity

    Full text link
    We explain a procedure to manifest the Bern-Carrasco-Johansson duality between color and kinematics in nn-point one-loop amplitudes of a variety of supersymmetric gauge theories. Explicit amplitude representations are constructed through a systematic reorganization of the integrands in the Cachazo-He-Yuan formalism. Our construction holds for any nonzero number of supersymmetries and does not depend on the number of spacetime dimensions. The cancellations from supersymmetry multiplets in the loop as well as the resulting power counting of loop momenta is manifested along the lines of the corresponding superstring computations. The setup is used to derive the one-loop version of the Kawai-Lewellen-Tye formula for the loop integrands of gravitational amplitudes.Comment: 58 + 15 page

    A minimal approach to the scattering of physical massless bosons

    Full text link
    Tree and loop level scattering amplitudes which involve physical massless bosons are derived directly from physical constraints such as locality, symmetry and unitarity, bypassing path integral constructions. Amplitudes can be projected onto a minimal basis of kinematic factors through linear algebra, by employing four dimensional spinor helicity methods or at its most general using projection techniques. The linear algebra analysis is closely related to amplitude relations, especially the Bern-Carrasco-Johansson relations for gluon amplitudes and the Kawai-Lewellen-Tye relations between gluons and graviton amplitudes. Projection techniques are known to reduce the computation of loop amplitudes with spinning particles to scalar integrals. Unitarity, locality and integration-by-parts identities can then be used to fix complete tree and loop amplitudes efficiently. The loop amplitudes follow algorithmically from the trees. A range of proof-of-concept examples is presented. These include the planar four point two-loop amplitude in pure Yang-Mills theory as well as a range of one loop amplitudes with internal and external scalars, gluons and gravitons. Several interesting features of the results are highlighted, such as the vanishing of certain basis coefficients for gluon and graviton amplitudes. Effective field theories are naturally and efficiently included into the framework. The presented methods appear most powerful in non-supersymmetric theories in cases with relatively few legs, but with potentially many loops. For instance, iterated unitarity cuts of four point amplitudes for non-supersymmetric gauge and gravity theories can be computed by matrix multiplication, generalising the so-called rung-rule of maximally supersymmetric theories. The philosophy of the approach to kinematics also leads to a technique to control color quantum numbers of scattering amplitudes with matter.Comment: 65 pages, exposition improved, typos correcte

    Scattering equations and virtuous kinematic numerators and dual-trace functions

    Get PDF
    Inspired by recent developments on scattering equations, we present a constructive procedure for computing symmetric, amplitude-encoded, BCJ numerators for n-point gauge-theory amplitudes, thus satisfying the three virtues identified by Broedel and Carrasco. We also develop a constructive procedure for computing symmetric, amplitude-encoded dual-trace functions (tau) for n-point amplitudes. These can be used to obtain symmetric kinematic numerators that automatically satisfy color-kinematic duality. The S_n symmetry of n-point gravity amplitudes formed from these symmetric dual-trace functions is completely manifest. Explicit expressions for four- and five-point amplitudes are presented.Comment: 24 pages; v2: minor sign corrections, added references; v3: minor corrections, published versio

    On Three-Algebra and Bi-Fundamental Matter Amplitudes and Integrability of Supergravity

    Get PDF
    We explore tree-level amplitude relations for SU(N)xSU(M) bi-fundamental matter theories. Embedding the group-theory structure in a Lie three-algebra, we derive Kleiss-Kuijf-like relations for bi-fundamental matter theories in general dimension. We investigate the three-algebra color-kinematics duality for these theories. Unlike the Yang-Mills two-algebra case, the three-algebra Bern-Carrasco-Johansson relations depend on the spacetime dimension and on the detailed symmetry properties of the structure constants. We find the presence of such relations in three and two dimensions, and absence in D>3. Surprisingly, beyond six point, such relations are absent in the Aharony-Bergman-Jafferis-Maldacena theory for general gauge group, while the Bagger-Lambert-Gustavsson theory, and its supersymmetry truncations, obey the color-kinematics duality like clockwork. At four and six points the relevant partial amplitudes of the two theories are bijectively related, explaining previous results in the literature. In D=2 the color-kinematics duality gives results consistent with integrability of two-dimensional N=16\mathcal{N}=16 supergravity: The four-point amplitude satisfies a Yang-Baxter equation; the six- and eight-point amplitudes vanish for certain kinematics away from factorization channels, as expected from integrability.Comment: 52 page

    Double-Copy Structure of One-Loop Open-String Amplitudes

    Full text link
    In this Letter, we provide evidence for a new double-copy structure in one-loop amplitudes of the open superstring. Their integrands with respect to the moduli space of genus-one surfaces are cast into a form where gauge-invariant kinematic factors and certain functions of the punctures -- so-called generalized elliptic integrands -- enter on completely symmetric footing. In particular, replacing the generalized elliptic integrands by a second copy of kinematic factors maps one-loop open-string correlators to gravitational matrix elements of the higher-curvature operator R^4.Comment: 5 pages, v2: modifications in the structure to match published versio

    On paths-based criteria for polynomial time complexity in proof-nets

    Get PDF
    Girard's Light linear logic (LLL) characterized polynomial time in the proof-as-program paradigm with a bound on cut elimination. This logic relied on a stratification principle and a "one-door" principle which were generalized later respectively in the systems L^4 and L^3a. Each system was brought with its own complex proof of Ptime soundness. In this paper we propose a broad sufficient criterion for Ptime soundness for linear logic subsystems, based on the study of paths inside the proof-nets, which factorizes proofs of soundness of existing systems and may be used for future systems. As an additional gain, our bound stands for any reduction strategy whereas most bounds in the literature only stand for a particular strategy.Comment: Long version of a conference pape
    • …
    corecore