16,727 research outputs found

    Nodal Structure of Unconventional Superconductors Probed by the Angle Resolved Thermal Transport Measurements

    Get PDF
    Over the past two decades, unconventional superconductivity with gap symmetry other than s-wave has been found in several classes of materials, including heavy fermion (HF), high-T_c, and organic superconductors. Unconventional superconductivity is characterized by anisotropic superconducting gap functions, which may have zeros (nodes) along certain directions in the Brillouin zone. The nodal structure is closely related to the pairing interaction, and it is widely believed that the presence of nodes is a signature of magnetic or some other exotic, rather than conventional phonon-mediated, pairing mechanism. Therefore experimental determination of the gap function is of fundamental importance. However, the detailed gap structure, especially the direction of the nodes, is an unresolved issue in most unconventional superconductors. Recently it has been demonstrated that the thermal conductivity and specific heat measurements under magnetic field rotated relative to the crystal axes are a powerful method for determining the shape of the gap and the nodal directions in the bulk. Here we review the theoretical underpinnings of the method and the results for the nodal structure of several unconventional superconductors, including borocarbide YNi2_2B2_2C, heavy fermions UPd2_2Al3_3, CeCoIn5_5, and PrOs4_4Sb12_{12}, organic superconductor, κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2, and ruthenate Sr2_2RuO4_4, determined by angular variation of the thermal conductivity and heat capacity.Comment: topical review, 55 pages, 35 figures. Figure quality has been reduced for submission to cond-mat, higher quality figures available from the authors or from the publishe

    Determination of the Coherence Length and the Cooper-Pair Size in Unconventional Superconductors by Tunnelling Spectroscopy

    Full text link
    The main purpose of the paper is to discuss a possibility of the determination of the values of the coherence length and the Cooper-pair size in unconventional superconductors by using tunnelling spectroscopy. In the mixed state of type-II superconductors, an applied magnetic field penetrates the superconductor in the form of vortices which form a regular lattice. In unconventional superconductors, the inner structure of a vortex core has a complex structure which is determined by the order parameter of the superconducting state and by the pairing wavefunction of the Cooper pairs. In clean superconductors, the spatial variations of the order parameter and the pairing wavefunction occur over the distances of the order of the coherence length and the Cooper-pair size, respectively. Therefore, by performing tunnelling spectroscopy along a line passing through a vortex core, one is able, in principle, to estimate the values of the coherent length and the Cooper-pair size.Comment: 13 pages, including 17 figure

    Electronic structure of kinetic energy driven superconductors

    Full text link
    Within the framework of the kinetic energy driven superconductivity, we study the electronic structure of cuprate superconductors. It is shown that the spectral weight of the electron spectrum in the antinodal point of the Brillouin zone decreases as the temperature is increased. With increasing the doping concentration, this spectral weigh increases, while the position of the sharp superconducting quasiparticle peak moves to the Fermi energy. In analogy to the normal-state case, the superconducting quasiparticles around the antinodal point disperse very weakly with momentum. Our results also show that the striking behavior of the superconducting coherence of the quasiparticle peaks is intriguingly related to the strong coupling between the superconducting quasiparticles and collective magnetic excitations.Comment: 8 pages, 4 figures, added discussions and updated references, accepted for publication in Physics Letters
    • …
    corecore