58,778 research outputs found

    Optical excitation of nonlinear spin waves

    Full text link
    We demonstrate a technique for exciting spin waves in an ultracold gas of Rb-87 atoms based on tunable AC Stark potentials. This technique allows us to excite normal modes of spin waves with arbitrary amplitudes in the trapped gas, including dipole, quadrupole, octupole, and hexadecapole modes. These modes exhibit strong nonlinearities, which manifest as amplitude dependence of the excitation frequencies and departure from sinusoidal behavior. Our results are in good agreement with a full treatment of a quantum Boltzmann transport equation.Comment: 11 pages, 5 figure

    Kinematic Density Waves in Accretion Disks

    Full text link
    When thin accretion disks around black holes are perturbed, the main restoring force is gravity. If gas pressure, magnetic stresses, and radiation pressure are neglected, the disk remains thin as long as orbits do not intersect. Intersections would result in pressure forces which limit the growth of perturbations. We find that a discrete set of perturbations is possible for which orbits remain non-intersecting for arbitrarily long times. These modes define a discrete set of frequencies. We classify all long-lived perturbations for arbitrary potentials and show how their mode frequencies are related to pattern speeds computed from the azimuthal and epicyclic frequencies. We show that modes are concentrated near radii where the pattern speed has vanishing radial derivative. We explore these modes around Kerr black holes as a possible explanation for the high-frequency quasi-periodic oscillations of black hole binaries such as GRO J1655-40. The long-lived modes are shown to coincide with diskoseismic waves in the limit of small sound speed. While the waves have long lifetime, they have the wrong frequencies to explain the pairs of high-frequency quasi-periodic oscillations observed in black hole binaries.Comment: 28 pages, 6 figures; extended comparison with diskoseismology; added reference to astro-ph/060368

    7Be(p,gamma)8B S-factor from ab initio no-core shell model wave functions

    Get PDF
    Nuclear structure of 7Be, 8B and 7,8Li is studied within the ab initio no-core shell model (NCSM). Starting from high-precision nucleon-nucleon (NN) interactions, wave functions of 7Be and 8B bound states are obtained in basis spaces up to 10 hbar Omega and used to calculate channel cluster form factors (overlap integrals) of the 8B ground state with 7Be+p. Due to the use of the harmonic oscillator (HO) basis, the overlap integrals have incorrect asymptotic properties. We fix this problem in two alternative ways. First, by a Woods-Saxon (WS) potential solution fit to the interior of the NCSM overlap integrals. Second, by a direct matching with the Whittaker function. The corrected overlap integrals are then used for the 7Be(p,gamma)8B S-factor calculation. We study the convergence of the S-factor with respect to the NCSM HO frequency and the model space size. Our S-factor results are in agreement with recent direct measurement data. We also test the spectroscopic factors and the corrected overlap integrals from the NCSM in describing the momentum distributions in knockout reactions with 8B projectiles. A good agreement with the available experimental data is also found, attesting the overall consistency of the calculations.Comment: 18 pages, 26 figure

    Tensor Spectra Templates for Axion-Gauge Fields Dynamics during Inflation

    Get PDF
    SU(2)SU(2) gauge fields can generate large gravitational waves during inflation, if they are coupled to an axion which can be either the inflaton or a spectator field. The shape of the produced tensor power spectrum Ph\mathcal{P}_h depends on the form of the axion potential. We derive analytic expressions and provide general templates for Ph\mathcal{P}_h for various types of the spectator axion potential. Furthermore, we explore the detectability of the oscillatory feature, which is present in Ph\mathcal{P}_h in the case of an axion monodromy model, by possible future CMB B-mode polarization observations.Comment: 31 pages, 11 figure

    Directivity patterns of laser-generated sound in solids: Effects of optical and thermal parameters

    Get PDF
    In the present paper, directivity patterns of laser-generated sound in solids are investigated theoretically. Two main approaches to the calculation of directivity patterns of laser-generated sound are discussed for the most important case of thermo-optical regime of generation. The first approach, which is widely used in practice, is based on the simple modelling of the equivalent thermo-optical source as a mechanical dipole comprising two horizontal forces applied to the surface in opposite directions. The second approach is based on the rigorous theory that takes into account all acoustical, optical and thermal parameters of a solid material and all geometrical and physical parameters of a laser beam. Directivity patterns of laser-generated bulk longitudinal and shear elastic waves, as well as the amplitudes of generated Rayleigh surface waves, are calculated for different values of physical and geometrical parameters and compared with the directivity patterns calculated in case of dipole-source representation. It is demonstrated that the simple approach using a dipole-source representation of laser-generated sound is rather limited, especially for description of generated longitudinal acoustic waves. A practical criterion is established to define the conditions under which the dipole-source representation gives predictions with acceptable errors. It is shown that, for radiation in the normal direction to the surface, the amplitudes of longitudinal waves are especially sensitive to the values of thermal parameters and of the acoustic reflection coefficient from a free solid surface. A discussion is given on the possibility of using such a high sensitivity to the values of the reflection coefficient for investigation of surface properties of real solids.Comment: 14 pages, 7 figure

    A microscopic equation of state for neutron-rich matter and its effect on neutron star properties

    Get PDF
    Chapter prepared for the book "Astrophysics", ISBN 979-953-307-389-6, INTECH Publishers (in press).Comment: 34 pages, 20 figure
    • …
    corecore