47 research outputs found

    IP Restoration vs. WDM Protection: Is There an Optimal choice?

    Get PDF

    Protection and restoration algorithms for WDM optical networks

    Get PDF
    Currently, Wavelength Division Multiplexing (WDM) optical networks play a major role in supporting the outbreak in demand for high bandwidth networks driven by the Internet. It can be a catastrophe to millions of users if a single optical fiber is somehow cut off from the network, and there is no protection in the design of the logical topology for a restorative mechanism. Many protection and restoration algorithms are needed to prevent, reroute, and/or reconfigure the network from damages in such a situation. In the past few years, many works dealing with these issues have been reported. Those algorithms can be implemented in many ways with several different objective functions such as a minimization of protection path lengths, a minimization of restoration times, a maximization of restored bandwidths, etc. This thesis investigates, analyzes and compares the algorithms that are mainly aimed to guarantee or maximize the amount of remaining bandwidth still working over a damaged network. The parameters considered in this thesis are the routing computation and implementation mechanism, routing characteristics, recovering computation timing, network capacity assignment, and implementing layer. Performance analysis in terms of the restoration efficiency, the hop length, the percentage of bandwidth guaranteed, the network capacity utilization, and the blocking probability is conducted and evaluated

    Multi-layer survivability in IP-over-WDM networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Dynamic routing of reliability-differentiated connections in WDM optical networks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Providing Survivability In Optical Wdm Mesh Networks Considering Adaptation

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2007Internet kullanımının artışı ile birlikte, hızla büyüyen bant genişliği isteklerini karşılayabilecek olan optik WDM ağları, gelecekteki en uygun Internet omurgaları haline gelmiştir. Oluşabilecek herhangi bir bağlantı hatası, o bağlantı üzerinden geçen tüm ışık yollarının başarısızlığına yol açabilir. Bu yüzden, optik WDM ağları etkili hata bağışıklığı yöntemlerine ihtiyaç duymaktadır.Optik WDM ağlarındaki hata bağışıklığı problemini etkili bir şekilde giderebilmek için son günlerde bir çok yöntem sunulmuştur. Bu yöntemler arasında paylaşılan yol ile koruma yöntemi etkin kaynak kullanımı sağlayabildiğinden, en umut verici yöntemlerden biri olarak görülmektedir. Bu yöntemde yedek ışık yolları, eğer ilişkili birincil ışık yolları karşılıklı olarak farklı ise yani ortak bağ kullanmıyor iseler, dalga boyu paylaşımı yapabilemekdirler. Bu özelliğinden dolayı paylaşılan yol ile koruma yöntemi, yedek ışık yollarına daha az kaynak ayrılmasını sağlar ve diğer koruma yöntemlerinden daha iyi performans gösterir. Bu çalışmada, bir optik WDM ağına dinamik olarak gelen bağlantı isteklerine cevap verilirken, paylaşılan yol ile koruma ve yeniden yönlendirme özelliğini kullanan etkili bir yöntem geliştirilmiştir. Adaptasyon sağlayan paylaşılan yol ile koruma yöntemi olarak adlandıralan yeni yaklaşım, dinamik trafik akışında yedek yolların yol açtığı fazla kaynak tüketimini azaltmak için zaman içinde ağı yeni durumlara adapte edebilen, etkili yani daha çok isteğe cevap verilebilen bir servis sağlayabilmektedir. Bağlantıların öncelik beklentisine göre yeniden yönlendirme yapma özelliğinden dolayı servis seviyesinde anlaşma sağlayabilen bir yaklaşımdır.WDM optical networks are able to meet the rapid growth of bandwidth demands and are considered to be the most appropriate choice of future Internet backbone. However, the failure of a network component such as a fiber link can lead to the failure of all the lightpaths that traverse the failed link. Therefore, the huge bandwidth of WDM also requires efficient survivability mechanisms. Recently, new techniques have been proposed to efficiently deal with this problem in mesh networks. Among them, shared-path protection is a promising candidate because of its desirable resource efficiency, which is a result from effective backup sharing. Backup paths can share wavelength channels, when their corresponding working paths are mutually diverse. Therefore, shared-path protection can outperform other protection techniques based on the dedicated reservation of backup capacity. In this work, we focus on rerouting feature to design an efficient algorithm, called Adaptable Shared Path Protection (ASPP), for dynamic provisioning of shared-path-protected connections in optical mesh networks employing WDM. In particular, backup-channel capacity reservation in shared-protection causes too much resource consumption parallel to network load. ASPP provides the adaptation of network against dynamic traffic, and decreases blocking probability thanks to rerouting capability of paths. Also, ASPP can present SLA by providing an uninterrupted traffic flow for connection requests come with a high priority.Yüksek LisansM.Sc

    Priority based dynamic lightpath allocation in WDM networks.

    Get PDF
    Internet development generates new bandwidth requirement every day. Optical networks employing WDM (wavelength division multiplexing) technology can provide high capacity, low error rate and low delay. They are considered to be future backbone networks. Since WDM networks usually operate in a high speed, network failure (such as fiber cut), even for a short term, can cause huge data lost. So design robust WDM network to survive faults is a crucial issue in WDM networks. This thesis introduces a new and efficient MILP (Mixed Integer Linear Programming) formulation to solve dynamic lightpath allocation problem in survivable WDM networks, using both shared and dedicated path protection. The formulation defines multiple levels of service to further improve resource utilization. Dijkstra\u27s shortest path algorithm is used to pre-compute up to 3 alternative routes between any node pair, so as to limit the lightpath routing problem within up to 3 routes instead of whole network-wide. This way can shorten the solution time of MILP formulation; make it acceptable for practical size network. Extensive experiments carried out on a number of networks show this new MILP formulation can improve performance and is feasible for real-life network. Source: Masters Abstracts International, Volume: 43-01, page: 0249. Adviser: Arunita Jaekel. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Performance comparison of two dynamic shared-path protection algorithms for WDM optical mesh networks

    Get PDF
    Finding an optimal solution to the problem of fast and efficient provisioning of reliable connections and failure recovery in future intelligent optical networks is an ongoing challenge. In this dissertation, we investigate and compare the performance of an adapted shared-path protection algorithm with a more conventional approach; both designed for survivable optical Wavelength Division Multiplexing (WDM) mesh networks. The effect of different classes of service on performance is also investigated. Dedicated path protection is a proactive scheme which reserves spare resources to combat single link failures. Conventional Shared-path Protection (CSP) is desirable due to the efficient utilization of resources which results from the sharing of backup paths. Availability is an important performance assessment factor which measures the probability that a connection is in an operational state at some point in time. It is the instantaneous counterpart of reliability. Therefore, connections that do not meet their availability requirements are considered to be unreliable. Reliability Aware Shared-path Protection (RASP) adopts the advantages of CSP by provisioning reliable connections efficiently, but provides protection for unreliable connections only. With the use of a link disjoint parameter, RASP also permits the routing of partial link disjoint backup paths. A simulation study, which evaluates four performance parameters, is undertaken using a South African mesh network. The parameters that are investigated are: 1. Blocking Probability (BP), which considers the percentage of connection requests that are blocked, 2. Backup Success Ratio (BSR), which considers the number of connections that are successfully provisioned with a backup protection path, 3. Backup Primary Resource Ratio (BPR), which considers the ratio of resources utilized to cater for working traffic to the resources reserved for protection paths and lastly 4. Reliability Satisfaction Ratio (RSR), which evaluates the ratio of provisioned connections that meet their availability requirements to the total number of provisioned connections. Under dynamic traffic conditions with varying network load, simulation results show that RASP can provision reliable connections and satisfy Service Level Agreement (SLA) requirements. A competitive Blocking Probability (BP) and lower Backup Primary Resource Ratio (BPR) signify an improvement in resource utilization efficiency. A higher Backup Success Ratio (BSR) was also achieved under high Quality of Service (QoS) constraints. The significance of different availability requirements is evaluated by creating three categories, high availability, medium availability and low availability. These three categories represent three classes of service, with availability used as the QoS parameter. Within each class, the performance of RASP and CSP is observed and analyzed, using the parameters described above. Results show that both the BP and BPR increase with an increase in the availability requirements. The RSR decreases as the reliability requirements increase and a variation in BSR is also indicated.Dissertation (MEng)--University of Pretoria, 2009.Electrical, Electronic and Computer Engineeringunrestricte
    corecore