21,495 research outputs found

    Robust execution of service workflows using redundancy and advance reservations

    No full text
    In this paper, we develop a novel algorithm that allows service consumers to execute business processes (or workflows) of interdependent services in a dependable manner within tight time-constraints. In particular, we consider large inter-organisational service-oriented systems, where services are offered by external organisations that demand financial remuneration and where their use has to be negotiated in advance using explicit service-level agreements (as is common in Grids and cloud computing). Here, different providers often offer the same type of service at varying levels of quality and price. Furthermore, some providers may be less trustworthy than others, possibly failing to meet their agreements. To control this unreliability and ensure end-to-end dependability while maximising the profit obtained from completing a business process, our algorithm automatically selects the most suitable providers. Moreover, unlike existing work, it reasons about the dependability properties of a workflow, and it controls these by using service redundancy for critical tasks and by planning for contingencies. Finally, our algorithm reserves services for only parts of its workflow at any time, in order to retain flexibility when failures occur. We show empirically that our algorithm consistently outperforms existing approaches, achieving up to a 35-fold increase in profit and successfully completing most workflows, even when the majority of providers fail

    A quality of service framework for dependability in large-scale distributed systems

    Get PDF
    As recognition grows within industry for the advantages that can be gained through the exploitation of large-scale dynamic systems, a need emerges for dependable performance. Future systems are being developed with a requirement to support mission critical and safety critical applications. These levels of criticality require predictable performance and as such have traditionally not been associated with adaptive systems. The software architecture proposed for such systems takes its properties from the service-oriented computing paradigm and the communication model follows a publish/subscribe approach. While adaptive, such architectures do not, however, typically support real-time levels of performance. There is scope, however, for dependability within such architectures through the use of Quality of Service (QoS) methods. QoS is used in systems where the distribution of resources cannot be decided at design time. In this paper a QoS based framework is proposed for providing adaptive and dependable behaviour for future large-scale dynamic systems through the flexible allocation of resources. Simulation results are presented to demonstrate the benefits of the QoS framework and the tradeoffs that occur between negotiation algorithms of varying complexities

    Adaptive service discovery on service-oriented and spontaneous sensor systems

    Get PDF
    Service-oriented architecture, Spontaneous networks, Self-organisation, Self-configuration, Sensor systems, Social patternsNatural and man-made disasters can significantly impact both people and environments. Enhanced effect can be achieved through dynamic networking of people, systems and procedures and seamless integration of them to fulfil mission objectives with service-oriented sensor systems. However, the benefits of integration of services will not be realised unless we have a dependable method to discover all required services in dynamic environments. In this paper, we propose an Adaptive and Efficient Peer-to-peer Search (AEPS) approach for dependable service integration on service-oriented architecture based on a number of social behaviour patterns. In the AEPS network, the networked nodes can autonomously support and co-operate with each other in a peer-to-peer (P2P) manner to quickly discover and self-configure any services available on the disaster area and deliver a real-time capability by self-organising themselves in spontaneous groups to provide higher flexibility and adaptability for disaster monitoring and relief

    A deliberative model for self-adaptation middleware using architectural dependency

    Get PDF
    A crucial prerequisite to externalized adaptation is an understanding of how components are interconnected, or more particularly how and why they depend on one another. Such dependencies can be used to provide an architectural model, which provides a reference point for externalized adaptation. In this paper, it is described how dependencies are used as a basis to systems' self-understanding and subsequent architectural reconfigurations. The approach is based on the combination of: instrumentation services, a dependency meta-model and a system controller. In particular, the latter uses self-healing repair rules (or conflict resolution strategies), based on extensible beliefs, desires and intention (EBDI) model, to reflect reconfiguration changes back to a target application under examination

    FRIENDS - A flexible architecture for implementing fault tolerant and secure distributed applications

    Get PDF
    FRIENDS is a software-based architecture for implementing fault-tolerant and, to some extent, secure applications. This architecture is composed of sub-systems and libraries of metaobjects. Transparency and separation of concerns is provided not only to the application programmer but also to the programmers implementing metaobjects for fault tolerance, secure communication and distribution. Common services required for implementing metaobjects are provided by the sub-systems. Metaobjects are implemented using object-oriented techniques and can be reused and customised according to the application needs, the operational environment and its related fault assumptions. Flexibility is increased by a recursive use of metaobjects. Examples and experiments are also described
    • 

    corecore