1,374 research outputs found

    Reconfigurable Battery Techniques and Systems: A Survey

    Get PDF
    Battery packs with a large number of battery cells are becoming more and more widely adopted in electronic systems, such as robotics, renewable energy systems, energy storage in smart grids, and electronic vehicles. Therefore, a well-designed battery pack is essential for battery applications. In the literature, the majority of research in battery pack design focuses on battery management system, safety circuit, and cell-balancing strategies. Recently, the reconfigurable battery pack design has gained increasing attentions as a promising solution to solve the problems existing in the conventional battery packs and associated battery management systems, such as low energy efficiency, short pack lifespan, safety issues, and low reliability. One of the most prominent features of reconfigurable battery packs is that the battery cell topology can be dynamically reconfigured in the real-time fashion based on the current condition (in terms of the state of charge and the state of health) of battery cells. So far, there are several reconfigurable battery schemes having been proposed and validated in the literature, all sharing the advantage of cell topology reconfiguration that ensures balanced cell states during charging and discharging, meanwhile providing strong fault tolerance ability. This survey is undertaken with the intent of identifying the state-of-the-art technologies of reconfigurable battery as well as providing review on related technologies and insight on future research in this emerging area

    Future directions in networked sensing.

    Get PDF

    E-transportation: the role of embedded systems in electric energy transfer from grid to vehicle

    Get PDF
    Electric vehicles (EVs) are a promising solution to reduce the transportation dependency on oil, as well as the environmental concerns. Realization of E-transportation relies on providing electrical energy to the EVs in an effective way. Energy storage system (ESS) technologies, including batteries and ultra-capacitors, have been significantly improved in terms of stored energy and power. Beside technology advancements, a battery management system is necessary to enhance safety, reliability and efficiency of the battery. Moreover, charging infrastructure is crucial to transfer electrical energy from the grid to the EV in an effective and reliable way. Every aspect of E-transportation is permeated by the presence of an intelligent hardware platform, which is embedded in the vehicle components, provided with the proper interfaces to address the communication, control and sensing needs. This embedded system controls the power electronics devices, negotiates with the partners in multi-agent scenarios, and performs fundamental tasks such as power flow control and battery management. The aim of this paper is to give an overview of the open challenges in E-transportation and to show the fundamental role played by embedded systems. The conclusion is that transportation electrification cannot fully be realized without the inclusion of the recent advancements in embedded systems
    corecore