129,240 research outputs found

    Software reliability and dependability: a roadmap

    Get PDF
    Shifting the focus from software reliability to user-centred measures of dependability in complete software-based systems. Influencing design practice to facilitate dependability assessment. Propagating awareness of dependability issues and the use of existing, useful methods. Injecting some rigour in the use of process-related evidence for dependability assessment. Better understanding issues of diversity and variation as drivers of dependability. Bev Littlewood is founder-Director of the Centre for Software Reliability, and Professor of Software Engineering at City University, London. Prof Littlewood has worked for many years on problems associated with the modelling and evaluation of the dependability of software-based systems; he has published many papers in international journals and conference proceedings and has edited several books. Much of this work has been carried out in collaborative projects, including the successful EC-funded projects SHIP, PDCS, PDCS2, DeVa. He has been employed as a consultant t

    An automated wrapper-based approach to the design of dependable software

    Get PDF
    The design of dependable software systems invariably comprises two main activities: (i) the design of dependability mechanisms, and (ii) the location of dependability mechanisms. It has been shown that these activities are intrinsically difficult. In this paper we propose an automated wrapper-based methodology to circumvent the problems associated with the design and location of dependability mechanisms. To achieve this we replicate important variables so that they can be used as part of standard, efficient dependability mechanisms. These well-understood mechanisms are then deployed in all relevant locations. To validate the proposed methodology we apply it to three complex software systems, evaluating the dependability enhancement and execution overhead in each case. The results generated demonstrate that the system failure rate of a wrapped software system can be several orders of magnitude lower than that of an unwrapped equivalent

    DPN -- Dependability Priority Numbers

    Full text link
    This paper proposes a novel model-based approach to combine the quantitative dependability (safety, reliability, availability, maintainability and IT security) analysis and trade-off analysis. The proposed approach is called DPN (Dependability Priority Numbers) and allows the comparison of different actual dependability characteristics of a systems with its target values and evaluates them regarding trade-off analysis criteria. Therefore, the target values of system dependability characteristics are taken as requirements, while the actual value of a specific system design are provided by quantitative and qualitative dependability analysis (FHA, FMEA, FMEDA, of CFT-based FTA). The DPN approach evaluates the fulfillment of individual target requirements and perform trade-offs between analysis objectives. We present the workflow and meta-model of the DPN approach, and illustrate our approach using a case study on a brake warning contact system. Hence, we demonstrate how the model-based DPNs improve system dependability by selecting the project crucial dependable design alternatives or measures

    Assessing the Reliability of Diverse Fault-Tolerant Systems

    Get PDF
    Design diversity between redundant channels is a way of improving the dependability of software-based systems, but it does not alleviate the difficulties of dependability assessment

    On cost-effective reuse of components in the design of complex reconfigurable systems

    Get PDF
    Design strategies that benefit from the reuse of system components can reduce costs while maintaining or increasing dependability—we use the term dependability to tie together reliability and availability. D3H2 (aDaptive Dependable Design for systems with Homogeneous and Heterogeneous redundancies) is a methodology that supports the design of complex systems with a focus on reconfiguration and component reuse. D3H2 systematizes the identification of heterogeneous redundancies and optimizes the design of fault detection and reconfiguration mechanisms, by enabling the analysis of design alternatives with respect to dependability and cost. In this paper, we extend D3H2 for application to repairable systems. The method is extended with analysis capabilities allowing dependability assessment of complex reconfigurable systems. Analysed scenarios include time-dependencies between failure events and the corresponding reconfiguration actions. We demonstrate how D3H2 can support decisions about fault detection and reconfiguration that seek to improve dependability while reducing costs via application to a realistic railway case study

    On-Line Dependability Enhancement of Multiprocessor SoCs by Resource Management

    Get PDF
    This paper describes a new approach towards dependable design of homogeneous multi-processor SoCs in an example satellite-navigation application. First, the NoC dependability is functionally verified via embedded software. Then the Xentium processor tiles are periodically verified via on-line self-testing techniques, by using a new IIP Dependability Manager. Based on the Dependability Manager results, faulty tiles are electronically excluded and replaced by fault-free spare tiles via on-line resource management. This integrated approach enables fast electronic fault detection/diagnosis and repair, and hence a high system availability. The dependability application runs in parallel with the actual application, resulting in a very dependable system. All parts have been verified by simulation

    Software dependability modeling using an industry-standard architecture description language

    Full text link
    Performing dependability evaluation along with other analyses at architectural level allows both making architectural tradeoffs and predicting the effects of architectural decisions on the dependability of an application. This paper gives guidelines for building architectural dependability models for software systems using the AADL (Architecture Analysis and Design Language). It presents reusable modeling patterns for fault-tolerant applications and shows how the presented patterns can be used in the context of a subsystem of a real-life application
    • 

    corecore