62,308 research outputs found

    Dependability assessment of critical systems

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. Dependability evaluation is an important, mandatory step in designing and analyzing critical systems. Indeed, in critical systems, it is necessary to take into account not only operational or functional (static) relationships among components, but also non-functional, dynamic ones such as interferences or dependencies. They could be either internal, if arising from interactions among components, or external, if due to the external environment. To properly evaluate critical system dependability, accurate models are therefore required, able to deal with dynamic, dependent behaviors, especially if the system is complex. The main goal of this paper is to identify and specify the dynamic-dependent aspects that can affect the dependability of a critical system. Starting from the concept of dependence at the basis of system decomposition, an analytic framework and some of the most important dynamic-dependent aspects and behaviors are characterized in terms of dynamic reliability

    Dependability assessment of by-wire control systems using fault injection

    Full text link
    This paper is focused on the validation by means of physical fault injection at pin-level of a time-triggered communication controller: the TTP/C versions C1 and C2. The controller is a commercial off-the-shelf product used in the design of by-wire systems. Drive-by-wire and fly-by-wire active safety controls aim to prevent accidents. They are considered to be of critical importance because a serious situation may directly affect user safety. Therefore, dependability assessment is vital in their design. This work was funded by the European project `Fault Injection for TTAÂż and it is divided into two parts. In the first part, there is a verification of the dependability specifications of the TTP communication protocol, based on TTA, in the presence of faults directly induced in communication lines. The second part contains a validation and improvement proposal for the architecture in case of data errors. Such errors are due to faults that occurred during writing (or reading) actions on memory or during data storage.Blanc Clavero, S.; Bonastre Pina, AM.; Gil, P. (2009). Dependability assessment of by-wire control systems using fault injection. Journal of Systems Architecture. 55(2):102-113. doi:10.1016/j.sysarc.2008.09.003S10211355

    Certifications of Critical Systems – The CECRIS Experience

    Get PDF
    In recent years, a considerable amount of effort has been devoted, both in industry and academia, to the development, validation and verification of critical systems, i.e. those systems whose malfunctions or failures reach a critical level both in terms of risks to human life as well as having a large economic impact. Certifications of Critical Systems – The CECRIS Experience documents the main insights on Cost Effective Verification and Validation processes that were gained during work in the European Research Project CECRIS (Certification of Critical Systems). The objective of the research was to tackle the challenges of certification by focusing on those aspects that turn out to be more difficult/important for current and future critical systems industry: the effective use of methodologies, processes and tools. Starting from both the scientific and industrial state of the art methodologies for system development and the impact of their usage on the verification and validation and certification of critical systems, the project aimed at developing strategies and techniques supported by automatic or semi-automatic tools and methods for these activities, setting guidelines to support engineers during the planning of the verification and validation phases. Topics covered include: Safety Assessment, Reliability Analysis, Critical Systems and Applications, Functional Safety, Dependability Validation, Dependable Software Systems, Embedded Systems, System Certification

    Software reliability and dependability: a roadmap

    Get PDF
    Shifting the focus from software reliability to user-centred measures of dependability in complete software-based systems. Influencing design practice to facilitate dependability assessment. Propagating awareness of dependability issues and the use of existing, useful methods. Injecting some rigour in the use of process-related evidence for dependability assessment. Better understanding issues of diversity and variation as drivers of dependability. Bev Littlewood is founder-Director of the Centre for Software Reliability, and Professor of Software Engineering at City University, London. Prof Littlewood has worked for many years on problems associated with the modelling and evaluation of the dependability of software-based systems; he has published many papers in international journals and conference proceedings and has edited several books. Much of this work has been carried out in collaborative projects, including the successful EC-funded projects SHIP, PDCS, PDCS2, DeVa. He has been employed as a consultant t

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    Validation of Ultrahigh Dependability for Software-Based Systems

    Get PDF
    Modern society depends on computers for a number of critical tasks in which failure can have very high costs. As a consequence, high levels of dependability (reliability, safety, etc.) are required from such computers, including their software. Whenever a quantitative approach to risk is adopted, these requirements must be stated in quantitative terms, and a rigorous demonstration of their being attained is necessary. For software used in the most critical roles, such demonstrations are not usually supplied. The fact is that the dependability requirements often lie near the limit of the current state of the art, or beyond, in terms not only of the ability to satisfy them, but also, and more often, of the ability to demonstrate that they are satisfied in the individual operational products (validation). We discuss reasons why such demonstrations cannot usually be provided with the means available: reliability growth models, testing with stable reliability, structural dependability modelling, as well as more informal arguments based on good engineering practice. We state some rigorous arguments about the limits of what can be validated with each of such means. Combining evidence from these different sources would seem to raise the levels that can be validated; yet this improvement is not such as to solve the problem. It appears that engineering practice must take into account the fact that no solution exists, at present, for the validation of ultra-high dependability in systems relying on complex software
    • …
    corecore