2,313 research outputs found

    -ilities Tradespace and Affordability Project – Phase 3

    Get PDF
    One of the key elements of the SERC’s research strategy is transforming the practice of systems engineering and associated management practices – “SE and Management Transformation (SEMT).” The Grand Challenge goal for SEMT is to transform the DoD community’s current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first, document-driven, point- solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise- oriented, hardware-software-human engineered, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046)

    System Qualities Ontology, Tradespace and Affordability (SQOTA) Project – Phase 4

    Get PDF
    This task was proposed and established as a result of a pair of 2012 workshops sponsored by the DoD Engineered Resilient Systems technology priority area and by the SERC. The workshops focused on how best to strengthen DoD’s capabilities in dealing with its systems’ non-functional requirements, often also called system qualities, properties, levels of service, and –ilities. The term –ilities was often used during the workshops, and became the title of the resulting SERC research task: “ilities Tradespace and Affordability Project (iTAP).” As the project progressed, the term “ilities” often became a source of confusion, as in “Do your results include considerations of safety, security, resilience, etc., which don’t have “ility” in their names?” Also, as our ontology, methods, processes, and tools became of interest across the DoD and across international and standards communities, we found that the term “System Qualities” was most often used. As a result, we are changing the name of the project to “System Qualities Ontology, Tradespace, and Affordability (SQOTA).” Some of this year’s university reports still refer to the project as “iTAP.”This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004

    Modeling the dynamics of web-based service and resource-oriented digital ecosystems

    Get PDF
    The notion of digital species is broadened to include services and resources, special issues arise in modeling the dynamics and workflows with representations associated with these services and resources. To address these issues, this paper explores two different yet related approaches: the traditional BPEL-based workflow modeling approach and the Mashupbased Web approach. In this paper, we first demonstrate two examples of service-oriented and resource-oriented digital ecosystems on the Web. We then identify key issues pertinent to both types of DES. We discuss formal definition, specifications and issues of BPEL-based approach and Mashup-based modeling techniques with computational formalisms. Finally, we propose a hybrid approach to deal with modeling the dynamicsin processes associated with such Digital Ecosystems

    Extended Fault Taxonomy of SOA-Based Systems

    Get PDF
    Service Oriented Architecture (SOA) is considered as a standard for enterprise software development. The main characteristics of SOA are dynamic discovery and composition of software services in a heterogeneous environment. These properties pose newer challenges in fault management of SOA-based systems (SBS). A proper understanding of different faults in an SBS is very necessary for effective fault handling. A comprehensive three-fold fault taxonomy is presented here that covers distributed, SOA specific and non-functional faults in a holistic manner. A comprehensive fault taxonomy is a key starting point for providing techniques and methods for accessing the quality of a given system. In this paper, an attempt has been made to outline several SBSs faults into a well-structured taxonomy that may assist developers to plan suitable fault repairing strategies. Some commonly emphasized fault recovery strategies are also discussed. Some challenges that may occur during fault handling of SBSs are also mentioned

    Guiding the Service Engineering Process: the Importance of Service Aspects

    Get PDF

    Dynamic service orchestration in heterogeneous internet of things environments

    Get PDF
    Internet of Things (IoT) presents a dynamic global revolution in the Internet where physical and virtual “things” will communicate and share information. As the number of devices increases, there is a need for a plug-and–interoperate approach of deploying “things” to the existing network with less or no human need for configuration. The plug-and-interoperate approach allows heterogeneous “things” to seamlessly interoperate, interact and exchange information and subsequently share services. Services are represented as functionalities that are offered by the “things”. Service orchestration provides an approach to integration and interoperability that decouples applications from each other, enhancing capabilities to centrally manage and monitor components. This work investigated requirements for semantic interoperability and exposed current challenges in IoT interoperability as a means of facilitating services orchestration in IoT. The research proposes a platform that allows heterogeneous devices to collaborate thereby enabling dynamic service orchestration. The platform provides a common framework for representing semantics allowing for a consistent information exchange format. The information is stored and presented in an ontology thereby preserving semantics and making the information comprehensible to machines allowing for automated addressing, tracking and discovery as well as information representation, storage, and exchange. Process mining techniques were used to discover service orchestrations. Process mining techniques enabled the analysis of runtime behavior of service orchestrations and the semantic breakdown of the service request and creation in real time. This enabled the research to draw observations that led to conclusions presented in this work. The research noted that the use of semantic technologies facilitates interoperability in heterogeneous devices and can be implemented as a means to bypass challenges presented by differences in IoT “things”

    An empirical analysis of the determinants of mobile instant messaging appropriation in university learning

    Get PDF
    Published ArticleResearch on technology adoption often profiles device usability (such as perceived usefulness) and user dispositions (such as perceived ease of use) as the prime determinants of effective technology adoption. Since any process of technology adoption cannot be conceived out of its situated contexts, this paper argues that any pre-occupation with technology acceptance from the perspective of device usability and user dispositions potentially negates enabling contexts that make successful adoption a reality. Contributing to contemporary debates on technology adoption, this study presents flexible mobile learning contexts comprising cost (device cost and communication cost), device capabilities (portability, collaborative capabilities), and learner traits (learner control) as antecedents that enable the sustainable uptake of emerging technologies. To explore the acceptance and capacity of mobile instant messaging systems to improve student performance, the study draws on these antecedents, develops a factor model and empirically tests it on tertiary students at a South African University of Technology. The study involved 223 national diploma and bachelor’s degree students and employed partial least squares for statistical analysis. Overall, the proposed model displayed a good fit with the data and rendered satisfactory explanatory power for students’ acceptance of mobile learning. Findings suggest that device portability, communication cost, collaborative capabilities of device and learner control are the main drivers of flexible learning in mobile environments. Flexible learning context facilitated by learner control was found to have a positive influence on attitude towards mobile learning and exhibited the highest path coefficient of the overall model. The study implication is that educators need to create varied learning opportunities that leverage learner control of learning in mobile learning systems to enhance flexible mobile learning. The study also confirmed the statistical significance of the original Technology Acceptance Model constructs
    • …
    corecore