49 research outputs found

    Service-based Fault Tolerance for Cyber-Physical Systems: A Systems Engineering Approach

    Get PDF
    Cyber-physical systems (CPSs) comprise networked computing units that monitor and control physical processes in feedback loops. CPSs have potential to change the ways people and computers interact with the physical world by enabling new ways to control and optimize systems through improved connectivity and computing capabilities. Compared to classical control theory, these systems involve greater unpredictability which may affect the stability and dynamics of the physical subsystems. Further uncertainty is introduced by the dynamic and open computing environments with rapidly changing connections and system configurations. However, due to interactions with the physical world, the dependable operation and tolerance of failures in both cyber and physical components are essential requirements for these systems.The problem of achieving dependable operations for open and networked control systems is approached using a systems engineering process to gain an understanding of the problem domain, since fault tolerance cannot be solved only as a software problem due to the nature of CPSs, which includes close coordination among hardware, software and physical objects. The research methodology consists of developing a concept design, implementing prototypes, and empirically testing the prototypes. Even though modularity has been acknowledged as a key element of fault tolerance, the fault tolerance of highly modular service-oriented architectures (SOAs) has been sparsely researched, especially in distributed real-time systems. This thesis proposes and implements an approach based on using loosely coupled real-time SOA to implement fault tolerance for a teleoperation system.Based on empirical experiments, modularity on a service level can be used to support fault tolerance (i.e., the isolation and recovery of faults). Fault recovery can be achieved for certain categories of faults (i.e., non-deterministic and aging-related) based on loose coupling and diverse operation modes. The proposed architecture also supports the straightforward integration of fault tolerance patterns, such as FAIL-SAFE, HEARTBEAT, ESCALATION and SERVICE MANAGER, which are used in the prototype systems to support dependability requirements. For service failures, systems rely on fail-safe behaviours, diverse modes of operation and fault escalation to backup services. Instead of using time-bounded reconfiguration, services operate in best-effort capabilities, providing resilience for the system. This enables, for example, on-the-fly service changes, smooth recoveries from service failures and adaptations to new computing environments, which are essential requirements for CPSs.The results are combined into a systems engineering approach to dependability, which includes an analysis of the role of safety-critical requirements for control system software architecture design, architectural design, a dependability-case development approach for CPSs and domain-specific fault taxonomies, which support dependability case development and system reliability analyses. Other contributions of this work include three new patterns for fault tolerance in CPSs: DATA-CENTRIC ARCHITECTURE, LET IT CRASH and SERVICE MANAGER. These are presented together with a pattern language that shows how they relate to other patterns available for the domain

    Mitigating Insider Threat Risks in Cyber-physical Manufacturing Systems

    Get PDF
    Cyber-Physical Manufacturing System (CPMS)—a next generation manufacturing system—seamlessly integrates digital and physical domains via the internet or computer networks. It will enable drastic improvements in production flexibility, capacity, and cost-efficiency. However, enlarged connectivity and accessibility from the integration can yield unintended security concerns. The major concern arises from cyber-physical attacks, which can cause damages to the physical domain while attacks originate in the digital domain. Especially, such attacks can be performed by insiders easily but in a more critical manner: Insider Threats. Insiders can be defined as anyone who is or has been affiliated with a system. Insiders have knowledge and access authentications of the system\u27s properties, therefore, can perform more serious attacks than outsiders. Furthermore, it is hard to detect or prevent insider threats in CPMS in a timely manner, since they can easily bypass or incapacitate general defensive mechanisms of the system by exploiting their physical access, security clearance, and knowledge of the system vulnerabilities. This thesis seeks to address the above issues by developing an insider threat tolerant CPMS, enhanced by a service-oriented blockchain augmentation and conducting experiments & analysis. The aim of the research is to identify insider threat vulnerabilities and improve the security of CPMS. Blockchain\u27s unique distributed system approach is adopted to mitigate the insider threat risks in CPMS. However, the blockchain limits the system performance due to the arbitrary block generation time and block occurrence frequency. The service-oriented blockchain augmentation is providing physical and digital entities with the blockchain communication protocol through a service layer. In this way, multiple entities are integrated by the service layer, which enables the services with less arbitrary delays while retaining their strong security from the blockchain. Also, multiple independent service applications in the service layer can ensure the flexibility and productivity of the CPMS. To study the effectiveness of the blockchain augmentation against insider threats, two example models of the proposed system have been developed: Layer Image Auditing System (LIAS) and Secure Programmable Logic Controller (SPLC). Also, four case studies are designed and presented based on the two models and evaluated by an Insider Attack Scenario Assessment Framework. The framework investigates the system\u27s security vulnerabilities and practically evaluates the insider attack scenarios. The research contributes to the understanding of insider threats and blockchain implementations in CPMS by addressing key issues that have been identified in the literature. The issues are addressed by EBIS (Establish, Build, Identify, Simulation) validation process with numerical experiments and the results, which are in turn used towards mitigating insider threat risks in CPMS

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures comprise of many interconnected cyber and physical assets, and as such are large scale cyber-physical systems. Hence, the conventional approach of securing these infrastructures by addressing cyber security and physical security separately is no longer effective. Rather more integrated approaches that address the security of cyber and physical assets at the same time are required. This book presents integrated (i.e. cyber and physical) security approaches and technologies for the critical infrastructures that underpin our societies. Specifically, it introduces advanced techniques for threat detection, risk assessment and security information sharing, based on leading edge technologies like machine learning, security knowledge modelling, IoT security and distributed ledger infrastructures. Likewise, it presets how established security technologies like Security Information and Event Management (SIEM), pen-testing, vulnerability assessment and security data analytics can be used in the context of integrated Critical Infrastructure Protection. The novel methods and techniques of the book are exemplified in case studies involving critical infrastructures in four industrial sectors, namely finance, healthcare, energy and communications. The peculiarities of critical infrastructure protection in each one of these sectors is discussed and addressed based on sector-specific solutions. The advent of the fourth industrial revolution (Industry 4.0) is expected to increase the cyber-physical nature of critical infrastructures as well as their interconnection in the scope of sectorial and cross-sector value chains. Therefore, the demand for solutions that foster the interplay between cyber and physical security, and enable Cyber-Physical Threat Intelligence is likely to explode. In this book, we have shed light on the structure of such integrated security systems, as well as on the technologies that will underpin their operation. We hope that Security and Critical Infrastructure Protection stakeholders will find the book useful when planning their future security strategies

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts-Volume II

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications, such as hybrid and microgrid power systems based on the Energy Internet, Blockchain technology, and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above
    corecore