17,468 research outputs found

    2011 Strategic roadmap for Australian research infrastructure

    Get PDF
    The 2011 Roadmap articulates the priority research infrastructure areas of a national scale (capability areas) to further develop Australia’s research capacity and improve innovation and research outcomes over the next five to ten years. The capability areas have been identified through considered analysis of input provided by stakeholders, in conjunction with specialist advice from Expert Working Groups   It is intended the Strategic Framework will provide a high-level policy framework, which will include principles to guide the development of policy advice and the design of programs related to the funding of research infrastructure by the Australian Government. Roadmapping has been identified in the Strategic Framework Discussion Paper as the most appropriate prioritisation mechanism for national, collaborative research infrastructure. The strategic identification of Capability areas through a consultative roadmapping process was also validated in the report of the 2010 NCRIS Evaluation. The 2011 Roadmap is primarily concerned with medium to large-scale research infrastructure. However, any landmark infrastructure (typically involving an investment in excess of $100 million over five years from the Australian Government) requirements identified in this process will be noted. NRIC has also developed a ‘Process to identify and prioritise Australian Government landmark research infrastructure investments’ which is currently under consideration by the government as part of broader deliberations relating to research infrastructure. NRIC will have strategic oversight of the development of the 2011 Roadmap as part of its overall policy view of research infrastructure

    NASA Strategic Roadmap Summary Report

    Get PDF
    In response to the Vision, NASA commissioned strategic and capability roadmap teams to develop the pathways for turning the Vision into a reality. The strategic roadmaps were derived from the Vision for Space Exploration and the Aldrich Commission Report dated June 2004. NASA identified 12 strategic areas for roadmapping. The Agency added a thirteenth area on nuclear systems because the topic affects the entire program portfolio. To ensure long-term public visibility and engagement, NASA established a committee for each of the 13 areas. These committees - made up of prominent members of the scientific and aerospace industry communities and senior government personnel - worked under the Federal Advisory Committee Act. A committee was formed for each of the following program areas: 1) Robotic and Human Lunar Exploration; 2) Robotic and Human Exploration of Mars; 3) Solar System Exploration; 4) Search for Earth-Like Planets; 5) Exploration Transportation System; 6) International Space Station; 7) Space Shuttle; 8) Universe Exploration; 9) Earth Science and Applications from Space; 10) Sun-Solar System Connection; 11) Aeronautical Technologies; 12) Education; 13) Nuclear Systems. This document contains roadmap summaries for 10 of these 13 program areas; The International Space Station, Space Shuttle, and Education are excluded. The completed roadmaps for the following committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-Like Planets; Universe Exploration; Earth Science and Applications from Space; Sun-Solar System Connection are collected in a separate Strategic Roadmaps volume. This document contains memebership rosters and charters for all 13 committees

    NASA Capability Roadmaps Executive Summary

    Get PDF
    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps

    National EPOS initiatives and participation to the EPOS integration plan

    Get PDF
    European Plate Observing System (EPOS) is designed on a three-level architecture. The national research infrastructures (NRIs) constitute the backbone of the EPOS delivery framework, where data are generated, processed, analyzed and archived. These data are then integrated by thematic core services (TCS) and distributed through the centralized integrated core services (ICS). In this architecture, data provision from the NRIs is an essential element for the sustainable operation of the EPOS research infrastructure (RI). National EPOS initiatives in various countries in Europe are developed thanks to the increased awareness of the importance of FAIR (Findable, Accessible, Interoperable and Reusable) data management in science. As such, out of the 14 countries (13 members and one observer) that constitute the EPOS European Research Infrastructure Consortium (EPOS-ERIC), 11 have dedicated EPOS consortia established and included in the national roadmaps for research infrastructures. Moreover, there are in total 24 countries involved in the EPOS delivery framework where 10 are not yet members of EPOS-ERIC. However, the diversity of regulations and procedures adopted in different countries, hampers the development of dedicated EPOS consortia contributing to sustainability. In this paper, the national EPOS initiatives are discussed in order to emphasize synergies achieved and the shared efforts to build the EPOS RI during its life-cycle (the design, preparation, implementation, and pilot operational phases), tackling the challenge of sustainable operation.publishedVersio

    Geographical interdependence, international trade and economic dynamics: the Chinese and German solar energy industries

    Get PDF
    The trajectories of the German and Chinese photovoltaic industries differ significantly yet are strongly interdependent. Germany has seen a rapid growth in market demand and a strong increase in production, especially in the less developed eastern half of the country. Chinese growth has been export driven. These contrasting trajectories reflect the roles of market creation, investment and credit and the drivers of innovation and competitiveness. Consequent differences in competiveness have generated major trade disputes

    NASA Technology Plan 1998

    Get PDF
    This NASA Strategic Plan describes an ambitious, exciting vision for the Agency across all its Strategic Enterprises that addresses a series of fundamental questions of science and research. This vision is so challenging that it literally depends on the success of an aggressive, cutting-edge advanced technology development program. The objective of this plan is to describe the NASA-wide technology program in a manner that provides not only the content of ongoing and planned activities, but also the rationale and justification for these activities in the context of NASA's future needs. The scope of this plan is Agencywide, and it includes technology investments to support all major space and aeronautics program areas, but particular emphasis is placed on longer term strategic technology efforts that will have broad impact across the spectrum of NASA activities and perhaps beyond. Our goal is to broaden the understanding of NASA technology programs and to encourage greater participation from outside the Agency. By relating technology goals to anticipated mission needs, we hope to stimulate additional innovative approaches to technology challenges and promote more cooperative programs with partners outside NASA who share common goals. We also believe that this will increase the transfer of NASA-sponsored technology into nonaerospace applications, resulting in an even greater return on the investment in NASA

    On Using Blockchains for Safety-Critical Systems

    Full text link
    Innovation in the world of today is mainly driven by software. Companies need to continuously rejuvenate their product portfolios with new features to stay ahead of their competitors. For example, recent trends explore the application of blockchains to domains other than finance. This paper analyzes the state-of-the-art for safety-critical systems as found in modern vehicles like self-driving cars, smart energy systems, and home automation focusing on specific challenges where key ideas behind blockchains might be applicable. Next, potential benefits unlocked by applying such ideas are presented and discussed for the respective usage scenario. Finally, a research agenda is outlined to summarize remaining challenges for successfully applying blockchains to safety-critical cyber-physical systems

    Design of a business roadmap methodology: application in materials technology for Very Low Earth Orbits (VLEO) missions

    Get PDF
    This dissertation aims to develop a roadmap methodology incised in developing new materials in Very Low Earth Orbits (VLEO). Said orbits go from 200 to 1200 km, presenting characteristics such as extreme temperatures, radiation exposure and atomic oxygen erosion. Developing novel materials for space exploration that can withstand these conditions is crucial to future space investigation. This roadmap offers a systematic strategy for material development, emphasizing the necessity of conducting fundamental research to comprehend how materials behave in VLEO settings and then developing and testing novel materials with improved performance and durability. Developing novel materials that enable safer and more effective operations in VLEO conditions will be made possible by following this roadmap, which researchers and companies may use to enhance space technology and exploration
    corecore