3,157 research outputs found

    Applications of artificial intelligence in dentistry: A comprehensive review

    Get PDF
    This work was funded by the Spanish Ministry of Sciences, Innovation and Universities under Projects RTI2018-101674-B-I00 and PGC2018-101904-A-100, University of Granada project A.TEP. 280.UGR18, I+D+I Junta de Andalucia 2020 project P20-00200, and Fapergs/Capes do Brasil grant 19/25510000928-3. Funding for open-access charge: Universidad de Granada/CBUAObjective: To perform a comprehensive review of the use of artificial intelligence (AI) and machine learning (ML) in dentistry, providing the community with a broad insight on the different advances that these technologies and tools have produced, paying special attention to the area of esthetic dentistry and color research. Materials and methods: The comprehensive review was conducted in MEDLINE/ PubMed, Web of Science, and Scopus databases, for papers published in English language in the last 20 years. Results: Out of 3871 eligible papers, 120 were included for final appraisal. Study methodologies included deep learning (DL; n = 76), fuzzy logic (FL; n = 12), and other ML techniques (n = 32), which were mainly applied to disease identification, image segmentation, image correction, and biomimetic color analysis and modeling. Conclusions: The insight provided by the present work has reported outstanding results in the design of high-performance decision support systems for the aforementioned areas. The future of digital dentistry goes through the design of integrated approaches providing personalized treatments to patients. In addition, esthetic dentistry can benefit from those advances by developing models allowing a complete characterization of tooth color, enhancing the accuracy of dental restorations. Clinical significance: The use of AI and ML has an increasing impact on the dental profession and is complementing the development of digital technologies and tools, with a wide application in treatment planning and esthetic dentistry procedures.Spanish Ministry of Sciences, Innovation and Universities RTI2018-101674-B-I00 PGC2018-101904-A-100University of Granada project A.TEP. 280.UGR18Junta de Andalucia P20-00200Fapergs/Capes do Brasil grant 19/25510000928-3Universidad de Granada/CBU

    Application of artificial intelligence in the dental field : A literature review

    Get PDF
    Purpose: The purpose of this study was to comprehensively review the literature regarding the application of artificial intelligence (AI) in the dental field, focusing on the evaluation criteria and architecture types. Study selection: Electronic databases (PubMed, Cochrane Library, Scopus) were searched. Full-text articles describing the clinical application of AI for the detection, diagnosis, and treatment of lesions and the AI method/architecture were included. Results: The primary search presented 422 studies from 1996 to 2019, and 58 studies were finally selected. Regarding the year of publication, the oldest study, which was reported in 1996, focused on “oral and maxillofacial surgery.” Machine-learning architectures were employed in the selected studies, while approximately half of them (29/58) employed neural networks. Regarding the evaluation criteria, eight studies compared the results obtained by AI with the diagnoses formulated by dentists, while several studies compared two or more architectures in terms of performance. The following parameters were employed for evaluating the AI performance: accuracy, sensitivity, specificity, mean absolute error, root mean squared error, and area under the receiver operating characteristic curve. Conclusion: Application of AI in the dental field has progressed; however, the criteria for evaluating the efficacy of AI have not been clarified. It is necessary to obtain better quality data for machine learning to achieve the effective diagnosis of lesions and suitable treatment planning

    Medical Diagnosis with Multimodal Image Fusion Techniques

    Get PDF
    Image Fusion is an effective approach utilized to draw out all the significant information from the source images, which supports experts in evaluation and quick decision making. Multi modal medical image fusion produces a composite fused image utilizing various sources to improve quality and extract complementary information. It is extremely challenging to gather every piece of information needed using just one imaging method. Therefore, images obtained from different modalities are fused Additional clinical information can be gleaned through the fusion of several types of medical image pairings. This study's main aim is to present a thorough review of medical image fusion techniques which also covers steps in fusion process, levels of fusion, various imaging modalities with their pros and cons, and  the major scientific difficulties encountered in the area of medical image fusion. This paper also summarizes the quality assessments fusion metrics. The various approaches used by image fusion algorithms that are presently available in the literature are classified into four broad categories i) Spatial fusion methods ii) Multiscale Decomposition based methods iii) Neural Network based methods and iv) Fuzzy Logic based methods. the benefits and pitfalls of the existing literature are explored and Future insights are suggested. Moreover, this study is anticipated to create a solid platform for the development of better fusion techniques in medical applications

    A Survey on Artificial Intelligence Techniques for Biomedical Image Analysis in Skeleton-Based Forensic Human Identification

    Get PDF
    This paper represents the first survey on the application of AI techniques for the analysis of biomedical images with forensic human identification purposes. Human identification is of great relevance in today’s society and, in particular, in medico-legal contexts. As consequence, all technological advances that are introduced in this field can contribute to the increasing necessity for accurate and robust tools that allow for establishing and verifying human identity. We first describe the importance and applicability of forensic anthropology in many identification scenarios. Later, we present the main trends related to the application of computer vision, machine learning and soft computing techniques to the estimation of the biological profile, the identification through comparative radiography and craniofacial superimposition, traumatism and pathology analysis, as well as facial reconstruction. The potentialities and limitations of the employed approaches are described, and we conclude with a discussion about methodological issues and future research.Spanish Ministry of Science, Innovation and UniversitiesEuropean Union (EU) PGC2018-101216-B-I00Regional Government of Andalusia under grant EXAISFI P18-FR-4262Instituto de Salud Carlos IIIEuropean Union (EU) DTS18/00136European Commission H2020-MSCA-IF-2016 through the Skeleton-ID Marie Curie Individual Fellowship 746592Spanish Ministry of Science, Innovation and Universities-CDTI, Neotec program 2019 EXP-00122609/SNEO-20191236European Union (EU)Xunta de Galicia ED431G 2019/01European Union (EU) RTI2018-095894-B-I0

    ANALIZA OBRAZÓW MEDYCZNYCH I STEREOSKOPOWYCH W SYSTEMIE E-MEDICUS

    Get PDF
    In this work, there were implemented methods to analyze and segmentation medical images by using different kind of algorithms. The solution shows the architecture of the system collecting and analyzing data. There was tried to develop an algorithm for level set method applied to piecewise constant image segmentation. These algorithms are needed to identify arbitrary number of phases for the segmentation problem. With the use of modern algorithms, it can obtain a quicker diagnosis and automatically marking areas of the interest region in medical images.W pracy zaimplementowano metody analizy i segmentacji obrazów medycznych przy użyciu różnych algorytmów. Rozwiązanie pokazuje architekturę systemu zbierającego i analizującego dane. Podjęto próbę opracowania algorytmu dla metody zbiorów poziomicowych stosowanej do fragmentarycznej, stałej segmentacji obrazu. Metody te są potrzebne do identyfikacji dowolnej liczby faz dla problemu segmentacji. Dzięki zastosowaniu nowoczesnych algorytmów można uzyskać szybszą diagnozę i automatyczne oznaczanie obszarów w regionach zainteresowania w obrazach medycznych

    ZBIORY POZIOMICOWE I ALGORYTMY INTELIGENCJI OBLICZENIOWEJ DO ANALIZY OBRAZÓW MEDYCZNYCH W SYSTEMIE E-MEDICUS

    Get PDF
    In this work, there were implemented methods to analyze and segmentation medical images by using topological, statistical algorithms and artificial intelligence techniques. The solution shows the architecture of the system collecting and analyzing data. There was tried to develop an algorithm for level set method (LSM) applied to piecewise constant image segmentation. These algorithms are needed to identify arbitrary number of phases for the segmentation problem. The image segmentation refers to the process of partitioning a digital image into multiple regions. There is typically used to locate objects and boundaries in images. There was also shown an algorithm for analyzing medical images using a neural network MLP.W artykule zostały zaimplementowane metody do analizy i segmentacji obrazów medycznych przy użyciu algorytmów topologicznych, statystycznych i technik sztucznej inteligencji. Rozwiązanie przedstawia architekturę systemu do gromadzenia i analizy danych. Opracowano algorytmy oparte na metodzie zbiorów poziomicowych (MZP) jako odcinkowo stałą segmentację obrazu. Algorytmy te są potrzebne do identyfikacji dowolnej liczby faz dla problemu segmentacji, która odnosi się do procesu dzielenia cyfrowego obrazu w różnych regionach. Metoda używana jest zwykle do lokalizacji obiektów i brzegów w obrazach. W pracy przedstawiono również algorytm do analizy obrazów medycznych z wykorzystaniem sieci neuronowej MLP

    Denoising of impulse noise using partition-supported median, interpolation and DWT in dental X-ray images

    Get PDF
    The impulse noise often damages the human dental X-Ray images, leading to improper dental diagnosis. Hence, impulse noise removal in dental images is essential for a better subjective evaluation of human teeth. The existing denoising methods suffer from less restoration performance and less capacity to handle massive noise levels. This method suggests a novel denoising scheme called "Noise removal using Partition supported Median, Interpolation, and Discrete Wavelet Transform (NRPMID)" to address these issues. To effectively reduce the salt and pepper noise up to a range of 98.3 percent noise corruption, this method is applied over the surface of dental X-ray images based on techniques like mean filter, median filter, Bi-linear interpolation, Bi-Cubic interpolation, Lanczos interpolation, and Discrete Wavelet Transform (DWT). In terms of PSNR, IEF, and other metrics, the proposed noise removal algorithm greatly enhances the quality of dental X-ray images

    Expert System with an Embedded Imaging Module for Diagnosing Lung Diseases

    Get PDF
    Lung diseases are one of the major causes of suffering and death in the world. Improved survival rate could be obtained if the diseases can be detected at its early stage. Specialist doctors with the expertise and experience to interpret medical images and diagnose complex lung diseases are scarce. In this work, a rule-based expert system with an embedded imaging module is developed to assist the general physicians in hospitals and clinics to diagnose lung diseases whenever the services of specialist doctors are not available. The rule-based expert system contains a large knowledge base of data from various categories such as patient's personal and medical history, clinical symptoms, clinical test results and radiological information. An imaging module is integrated into the expert system for the enhancement of chest X-Ray images. The goal of this module is to enhance the chest X-Ray images so that it can provide details similar to more expensive methods such as MRl and CT scan. A new algorithm which is a modified morphological grayscale top hat transform is introduced to increase the visibility of lung nodules in chest X-Rays. Fuzzy inference technique is used to predict the probability of malignancy of the nodules. The output generated by the expert system was compared with the diagnosis made by the specialist doctors. The system is able to produce results\ud which are similar to the diagnosis made by the doctors and is acceptable by clinical standards
    corecore