774 research outputs found

    A Graph-Based Semi-Supervised k Nearest-Neighbor Method for Nonlinear Manifold Distributed Data Classification

    Get PDF
    kk Nearest Neighbors (kkNN) is one of the most widely used supervised learning algorithms to classify Gaussian distributed data, but it does not achieve good results when it is applied to nonlinear manifold distributed data, especially when a very limited amount of labeled samples are available. In this paper, we propose a new graph-based kkNN algorithm which can effectively handle both Gaussian distributed data and nonlinear manifold distributed data. To achieve this goal, we first propose a constrained Tired Random Walk (TRW) by constructing an RR-level nearest-neighbor strengthened tree over the graph, and then compute a TRW matrix for similarity measurement purposes. After this, the nearest neighbors are identified according to the TRW matrix and the class label of a query point is determined by the sum of all the TRW weights of its nearest neighbors. To deal with online situations, we also propose a new algorithm to handle sequential samples based a local neighborhood reconstruction. Comparison experiments are conducted on both synthetic data sets and real-world data sets to demonstrate the validity of the proposed new kkNN algorithm and its improvements to other version of kkNN algorithms. Given the widespread appearance of manifold structures in real-world problems and the popularity of the traditional kkNN algorithm, the proposed manifold version kkNN shows promising potential for classifying manifold-distributed data.Comment: 32 pages, 12 figures, 7 table

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Topological Methods for Exploring Low-density States in Biomolecular Folding Pathways

    Full text link
    Characterization of transient intermediate or transition states is crucial for the description of biomolecular folding pathways, which is however difficult in both experiments and computer simulations. Such transient states are typically of low population in simulation samples. Even for simple systems such as RNA hairpins, recently there are mounting debates over the existence of multiple intermediate states. In this paper, we develop a computational approach to explore the relatively low populated transition or intermediate states in biomolecular folding pathways, based on a topological data analysis tool, Mapper, with simulation data from large-scale distributed computing. The method is inspired by the classical Morse theory in mathematics which characterizes the topology of high dimensional shapes via some functional level sets. In this paper we exploit a conditional density filter which enables us to focus on the structures on pathways, followed by clustering analysis on its level sets, which helps separate low populated intermediates from high populated uninteresting structures. A successful application of this method is given on a motivating example, a RNA hairpin with GCAA tetraloop, where we are able to provide structural evidence from computer simulations on the multiple intermediate states and exhibit different pictures about unfolding and refolding pathways. The method is effective in dealing with high degree of heterogeneity in distribution, capturing structural features in multiple pathways, and being less sensitive to the distance metric than nonlinear dimensionality reduction or geometric embedding methods. It provides us a systematic tool to explore the low density intermediate states in complex biomolecular folding systems.Comment: 23 pages, 6 figure
    corecore