1,578 research outputs found

    Gradual Network for Single Image De-raining

    Full text link
    Most advances in single image de-raining meet a key challenge, which is removing rain streaks with different scales and shapes while preserving image details. Existing single image de-raining approaches treat rain-streak removal as a process of pixel-wise regression directly. However, they are lacking in mining the balance between over-de-raining (e.g. removing texture details in rain-free regions) and under-de-raining (e.g. leaving rain streaks). In this paper, we firstly propose a coarse-to-fine network called Gradual Network (GraNet) consisting of coarse stage and fine stage for delving into single image de-raining with different granularities. Specifically, to reveal coarse-grained rain-streak characteristics (e.g. long and thick rain streaks/raindrops), we propose a coarse stage by utilizing local-global spatial dependencies via a local-global subnetwork composed of region-aware blocks. Taking the residual result (the coarse de-rained result) between the rainy image sample (i.e. the input data) and the output of coarse stage (i.e. the learnt rain mask) as input, the fine stage continues to de-rain by removing the fine-grained rain streaks (e.g. light rain streaks and water mist) to get a rain-free and well-reconstructed output image via a unified contextual merging sub-network with dense blocks and a merging block. Solid and comprehensive experiments on synthetic and real data demonstrate that our GraNet can significantly outperform the state-of-the-art methods by removing rain streaks with various densities, scales and shapes while keeping the image details of rain-free regions well-preserved.Comment: In Proceedings of the 27th ACM International Conference on Multimedia (MM 2019

    Non-locally Enhanced Encoder-Decoder Network for Single Image De-raining

    Full text link
    Single image rain streaks removal has recently witnessed substantial progress due to the development of deep convolutional neural networks. However, existing deep learning based methods either focus on the entrance and exit of the network by decomposing the input image into high and low frequency information and employing residual learning to reduce the mapping range, or focus on the introduction of cascaded learning scheme to decompose the task of rain streaks removal into multi-stages. These methods treat the convolutional neural network as an encapsulated end-to-end mapping module without deepening into the rationality and superiority of neural network design. In this paper, we delve into an effective end-to-end neural network structure for stronger feature expression and spatial correlation learning. Specifically, we propose a non-locally enhanced encoder-decoder network framework, which consists of a pooling indices embedded encoder-decoder network to efficiently learn increasingly abstract feature representation for more accurate rain streaks modeling while perfectly preserving the image detail. The proposed encoder-decoder framework is composed of a series of non-locally enhanced dense blocks that are designed to not only fully exploit hierarchical features from all the convolutional layers but also well capture the long-distance dependencies and structural information. Extensive experiments on synthetic and real datasets demonstrate that the proposed method can effectively remove rain-streaks on rainy image of various densities while well preserving the image details, which achieves significant improvements over the recent state-of-the-art methods.Comment: Accepted to ACM Multimedia 201

    Latent Degradation Representation Constraint for Single Image Deraining

    Full text link
    Since rain streaks show a variety of shapes and directions, learning the degradation representation is extremely challenging for single image deraining. Existing methods are mainly targeted at designing complicated modules to implicitly learn latent degradation representation from coupled rainy images. This way, it is hard to decouple the content-independent degradation representation due to the lack of explicit constraint, resulting in over- or under-enhancement problems. To tackle this issue, we propose a novel Latent Degradation Representation Constraint Network (LDRCNet) that consists of Direction-Aware Encoder (DAEncoder), UNet Deraining Network, and Multi-Scale Interaction Block (MSIBlock). Specifically, the DAEncoder is proposed to adaptively extract latent degradation representation by using the deformable convolutions to exploit the direction consistency of rain streaks. Next, a constraint loss is introduced to explicitly constraint the degradation representation learning during training. Last, we propose an MSIBlock to fuse with the learned degradation representation and decoder features of the deraining network for adaptive information interaction, which enables the deraining network to remove various complicated rainy patterns and reconstruct image details. Experimental results on synthetic and real datasets demonstrate that our method achieves new state-of-the-art performance
    • …
    corecore