538 research outputs found

    Nonlinear dynamic process monitoring using kernel methods

    Get PDF
    The application of kernel methods in process monitoring is well established. How- ever, there is need to extend existing techniques using novel implementation strate- gies in order to improve process monitoring performance. For example, process monitoring using kernel principal component analysis (KPCA) have been reported. Nevertheless, the e ect of combining kernel density estimation (KDE)-based control limits with KPCA for nonlinear process monitoring has not been adequately investi- gated and documented. Therefore, process monitoring using KPCA and KDE-based control limits is carried out in this work. A new KPCA-KDE fault identi cation technique is also proposed. Furthermore, most process systems are complex and data collected from them have more than one characteristic. Therefore, three techniques are developed in this work to capture more than one process behaviour. These include the linear latent variable-CVA (LLV-CVA), kernel CVA using QR decomposition (KCVA-QRD) and kernel latent variable-CVA (KLV-CVA). LLV-CVA captures both linear and dynamic relations in the process variables. On the other hand, KCVA-QRD and KLV-CVA account for both nonlinearity and pro- cess dynamics. The CVA with kernel density estimation (CVA-KDE) technique reported does not address the nonlinear problem directly while the regular kernel CVA approach require regularisation of the constructed kernel data to avoid com- putational instability. However, this compromises process monitoring performance. The results of the work showed that KPCA-KDE is more robust and detected faults higher and earlier than the KPCA technique based on Gaussian assumption of pro- cess data. The nonlinear dynamic methods proposed also performed better than the afore-mentioned existing techniques without employing the ridge-type regulari- sation

    ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ ํ•™์Šต ๋ฐ ์ถ”๋ก ๊ณผ ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ํ™œ์šฉํ•œ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2019. 2. ์ด์›๋ณด.Fault detection and diagnosis (FDD) is an essential part of safe plant operation. Fault detection refers to the process of detecting the occurrence of a fault quickly and accurately, and representative methods include the use of principal component analysis (PCA), and autoencoders (AE). Fault diagnosis is the process of isolating the root cause node of the fault, then determining the fault propagation path to identify the characteristic of the fault. Among the various methods, data-driven methods are the most widely-used, due to their applicability and good performance compared to analytical and knowledge-based methods. Although many studies have been conducted regarding FDD, no methodology for conducting every step of FDD exists, where the fault is effectively detected and diagnosed. Moreover, existing methods have limited applicability and show limited performance. Previous fault detection methods show loss of variable characteristics in dimensionality reduction methods and have large computational loads, leading to poor performance for complex faults. Likewise, preceding fault diagnosis methods show inaccurate fault isolation results, and biased fault propagation path analysis as a consequence of implementing knowledge-based characteristics for construction of digraphs of process variable relationships. Thus a comprehensive methodology for FDD which shows good performance for complex faults and variable relationships, is required. In this study, an efficient and effective comprehensive FDD methodology based on Markov random fields (MRF) modelling is proposed. MRFs provide an effective means for modelling complex variable relationships, and allows efficient computation of marginal probability of the process variables, leading to good performance regarding FDD. First, a fault detection framework for process variables, integrating the MRF modelling and structure learning with iterative graphical lasso is proposed. Graphical lasso is an algorithm for learning the structure of MRFs, and is applicable to large variable sets since it approximates the MRF structure by assuming the relationships between variables to be Gaussian. By iteratively applying the graphical lasso to monitored variables, the variable set is subdivided into smaller groups, and consequently the computational cost of MRF inference is mitigated allowing efficient fault detection. After variable groups are obtained through iterative graphical lasso, they are subject to the MRF monitoring framework that is proposed in this work. The framework obtains the monitoring statistics by calculating the probability density of the variable groups through kernel density estimation, and the monitoring limits are obtained separately for each group by using a false alarm rate of 5%. Second, a fault isolation and propagation path analysis methodology is proposed, where the conditional marginal probability of each variable is computed via inference, then is used to calculate the conditional contribution of individual variables during the occurrence of a fault. Using the kernel belief propagation (KBP) algorithm, which is an algorithm for learning and inferencing MRFs comprising continuous variables, the parameters of MRF are trained using normal process data, then the individual conditional contribution of each variable is calculated for every sample of the fault process data. By analyzing the magnitude and reaction speed of the conditional contribution of individual variables, the root fault node can be isolated and the fault propagation path can be determined effectively. Finally, the proposed methodology is verified by applying it to the well-known Tennessee Eastman process (TEP) model. Since the TEP has been used as a benchmark process over the past years for verifying various FDD methods, it serves the purpose of performance comparison. Also, since it consists of multiple units and has complex variable relationships such as recycle loops, it is suitable for verifying the performance of the proposed methodology. Application results show that the proposed methodology performs better compared to state-of-the-art FDD algorithms, in terms of both fault detection and diagnosis. Fault detection results showed that all 28 faults designed inside the TEP model were detected with a fault detection accuracy of over 95%, which is higher than any other previously proposed fault detection method. Also, the method showed good fault isolation and propagation path analysis results, where the root-cause node for every fault was detected correctly, and the characteristics of the initiated faults were identified through fault propagation path analysis.๊ณต์ • ์ด์ƒ์˜ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ์‹œ์Šคํ…œ์€ ์•ˆ์ „ํ•œ ๊ณต์ • ์šด์˜์— ํ•„์ˆ˜์ ์ธ ๋ถ€๋ถ„์ด๋‹ค. ์ด์ƒ ๊ฐ์ง€๋Š” ์ด์ƒ์ด ๋ฐœ์ƒํ–ˆ์„ ๊ฒฝ์šฐ ์ฆ‰๊ฐ์ ์œผ๋กœ ์ด๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ์ง€ํ•˜๋Š” ํ”„๋กœ์„ธ์Šค๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ, ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ์ฃผ์„ฑ๋ถ„ ๋ถ„์„ ๋ฐ ์˜คํ† ์ธ์ฝ”๋”๋ฅผ ํ™œ์šฉํ•œ ๊ฐ์ง€ ๋ฐฉ๋ฒ•๋ก ์ด ์žˆ๋‹ค. ์ด์ƒ ์ง„๋‹จ์€ ๊ฒฐํ•จ์˜ ๊ทผ๋ณธ ์›์ธ์ด ๋˜๋Š” ๋…ธ๋“œ๋ฅผ ๊ฒฉ๋ฆฌํ•˜๊ณ , ์ด์ƒ์˜ ์ „ํŒŒ ๊ฒฝ๋กœ๋ฅผ ํƒ์ง€ํ•˜์—ฌ ์ด์ƒ์˜ ํŠน์„ฑ์„ ์‹๋ณ„ํ•˜๋Š” ํ”„๋กœ์„ธ์Šค์ด๋‹ค. ๊ณต์ • ์ด์ƒ์˜ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ๋ฐฉ๋ฒ•๋ก ์—๋Š” ๋ชจ๋ธ ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก , ์ง€์‹ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก  ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ์ด ์žˆ์ง€๋งŒ, ๊ณต์ •์— ๋Œ€ํ•œ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์„ฑ๋Šฅ ์ธก๋ฉด์—์„œ ๊ฐ€์žฅ ์œ ์šฉํ•˜๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋Š” ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์ด ๋„๋ฆฌ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ณต์ • ์ด์ƒ์˜ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์€ ๋‹ค๋ฐฉ๋ฉด์œผ๋กœ ์—ฐ๊ตฌ๋˜์–ด ์™”์ง€๋งŒ, ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์„ ๋ชจ๋‘ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์€ ์†Œ์ˆ˜์— ๋ถˆ๊ณผํ•˜๋ฉฐ, ์กด์žฌํ•˜๊ณ  ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ๋“ค ์—ญ์‹œ ๋‘ ๋ถ„์•ผ ๋ชจ๋‘์—์„œ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋Š” ๊ฒฝ์šฐ๋Š” ์—†๋‹ค. ์ด๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ๋“ค์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์ด ์ œํ•œ๋˜์–ด ์žˆ์œผ๋ฉฐ ๊ณต์ •์— ์ ์šฉ์‹œ ์ œํ•œ๋œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด์ƒ ๊ฐ์ง€์˜ ๊ฒฝ์šฐ, ๋Œ€์šฉ๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๊ณผ๋ถ€ํ•˜๋กœ ์ธํ•œ ๊ฐ์ง€ ๋Šฅ๋ ฅ์˜ ์ €ํ•˜, ์ฐจ์› ์ถ•์†Œ ๋ฐฉ๋ฒ•๋ก ๋“ค์„ ์‚ฌ์šฉํ•  ์‹œ ์ด์— ๋”ฐ๋ฅธ ๋ณ€์ˆ˜ ํŠน์„ฑ ๋ฐ˜์˜์˜ ๋ถ€์ •ํ™•์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์ถ•์†Œ๋œ ์ฐจ์›์—์„œ์˜ ๊ณ„์‚ฐ์œผ๋กœ ์ธํ•˜์—ฌ ๋ณตํ•ฉ์ ์ธ ํ˜•ํƒœ์˜ ์ด์ƒ์„ ๊ฐ์ง€ํ•ด ๋‚ด์ง€ ๋ชปํ•˜๋Š” ๋ฌธ์ œ ๋“ฑ์ด ์žˆ๋‹ค. ์ด์ƒ ์ง„๋‹จ์˜ ๊ฒฝ์šฐ ์ด์ƒ์˜ ์›์ธ์ด ๋˜๋Š” ๋…ธ๋“œ์˜ ๊ฒฉ๋ฆฌ ๋ฐ ์ด์ƒ ์ „ํŒŒ ๊ฒฝ๋กœ์— ๋Œ€ํ•œ ๋ถ„์„์ด ๋ถ€์ •ํ™•ํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์€๋ฐ, ์ด๋Š” ์ฐจ์› ์ถ•์†Œ๋กœ ์ธํ•˜์—ฌ ๊ณต์ • ๋ณ€์ˆ˜์˜ ํŠน์„ฑ์ด ์†Œ์‹ค๋˜๋Š” ์„ฑ์งˆ์ด ์žˆ๊ณ , ๋ฐฉํ–ฅ์„ฑ ๊ทธ๋ž˜ํ”„๋ฅผ ํ™œ์šฉํ•  ์‹œ ๊ณต์ •์— ๋Œ€ํ•œ ์„ ํ–‰ ์ง€์‹์„ ์ ์šฉํ•จ์œผ๋กœ์จ ํŽธํ–ฅ๋œ ์ด์ƒ ์ง„๋‹จ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒฝ์šฐ๋“ค์ด ๋ฐœ์ƒํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ๋“ค์— ๋Œ€ํ•œ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„์ ๋“ค์„ ๊ณ ๋ คํ•ด ๋ดค์„๋•Œ, ๋ณ€์ˆ˜ ๊ฐ๊ฐ์˜ ํŠน์„ฑ์ด ์†Œ์‹ค๋˜์ง€ ์•Š๋„๋กํ•˜์—ฌ ํšจ๊ณผ์ ์œผ๋กœ ์ด์ƒ์— ๋Œ€ํ•œ ๊ฐ์ง€์™€ ์ง„๋‹จ์„ ๋ชจ๋‘ ์ˆ˜ํ–‰ํ•ด ๋‚ผ ์ˆ˜ ์žˆ์œผ๋ฉด์„œ๋„, ๊ณ„์‚ฐ์ƒ์˜ ํšจ์œจ์„ฑ์„ ๊ฐ–์ถ˜, ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์— ๋Œ€ํ•œ ํ†ตํ•ฉ๋œ ๋ฐฉ๋ฒ•๋ก ์˜ ๊ฐœ๋ฐœ์ด ์‹œ๊ธ‰ํ•˜๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ ๋ชจ๋ธ๋ง๊ณผ ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœํ•˜์—ฌ, ์ด์ƒ์— ๋Œ€ํ•œ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์„ ๋ชจ๋‘ ์ˆ˜ํ–‰ํ•ด ๋‚ผ ์ˆ˜ ์žˆ๋Š” ํ†ตํ•ฉ์ ์ธ ๊ณต์ • ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ๋Š” ๋น„์„ ํ˜•์ ์ด๊ณ  ๋น„์ •๊ทœ์ ์ธ ๋ณ€์ˆ˜ ๊ด€๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ฃผ๊ณ , ์ด์ƒ ๋ฐœ์ƒ ์ƒํ™ฉ์—์„œ์˜ ๋ชจ๋‹ˆํ„ฐ๋ง ํ†ต๊ณ„๊ฐ’ ๊ณ„์‚ฐ์‹œ์— ๊ฐ ๋ณ€์ˆ˜์˜ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜์—ฌ ํ™•๋ฅ  ๊ณ„์‚ฐ์„ ํ•ด ๋‚ผ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํšจ๊ณผ์ ์ธ ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ์ˆ˜๋‹จ์ด ๋œ๋‹ค. ๊ธฐ๋ณธ์ ์œผ๋กœ ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ๋Š” ํ™•๋ฅ ๊ฐ’ ๊ณ„์‚ฐ์‹œ์˜ ๋ถ€ํ•˜๊ฐ€ ํฌ์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ทธ๋ž˜ํ”„ ๋ผ์˜ ๋ฐฉ๋ฒ•๋ก ์„ ์ถ”๊ฐ€์ ์œผ๋กœ ํ•จ๊ป˜ ํ™œ์šฉํ•˜์—ฌ ๊ณ„์‚ฐ ์ƒ์˜ ๋ถ€ํ•˜๋ฅผ ์ค„์ด๊ณ  ํšจ์œจ์ ์œผ๋กœ ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์„ ํ•ด๋‚ผ ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ๋‚ด์šฉ๋“ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ๊ณต์ • ๋ณ€์ˆ˜๋ฅผ ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ ํ˜•ํƒœ๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ , ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ํ™œ์šฉํ•ด ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์˜ ๊ตฌ์กฐ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์˜ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์ธ๋ฐ, ๋ณ€์ˆ˜ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๊ฐ€์šฐ์Šค ํ•จ์ˆ˜์˜ ํ˜•ํƒœ๋กœ ๊ฐ€์ •ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค๋ณ€์ˆ˜ ์‹œ์Šคํ…œ์—์„œ๋„ ํšจ์œจ์ ์œผ๋กœ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ด์ค€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐ˜๋ณต์  ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ์ œ์•ˆํ•˜์—ฌ ๋ชจ๋“  ๊ณต์ • ๋ณ€์ˆ˜๋“ค์ด ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ๋†’์€ ๋ณ€์ˆ˜ ์ง‘๋‹จ์œผ๋กœ ๋ฌถ์ผ ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ™œ์šฉํ•˜๋ฉด ์ „์ฒด ๊ณต์ • ๋ณ€์ˆ˜ ์ง‘๋‹จ์„ ๋‹ค์ˆ˜์˜ ์†Œ์ง‘๋‹จ์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ  ๊ฐ๊ฐ์— ๋Œ€ํ•œ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๋Š”๋ฐ, ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€์˜ ํšจ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ์šฐ์„ ์ ์œผ๋กœ ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ ํ™•๋ฅ  ๊ณ„์‚ฐ์˜ ๋Œ€์ƒ์ด ๋˜๋Š” ๋ณ€์ˆ˜์˜ ๊ฐœ์ˆ˜๋ฅผ ์ค„์—ฌ์คŒ์œผ๋กœ์จ ๊ณ„์‚ฐ ๋ถ€ํ•˜๋ฅผ ์ค„์ด๊ณ  ํšจ์œจ์ ์ธ ์ด์ƒ ๊ฐ์ง€๊ฐ€ ์ด๋ฃจ์–ด์งˆ ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๋˜ํ•œ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ๋†’์€ ์ง‘๋‹จ๋ผ๋ฆฌ ๋ฌถ์—ฌ์„œ ๋ชจ๋ธ๋ง ๋œ ๊ทธ๋ž˜ํ”„๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ด์ƒ์˜ ์ง„๋‹จ ๊ณผ์ •์—์„œ ๊ณต์ • ๋ณ€์ˆ˜ ๊ฐ„์˜ ๊ด€๊ณ„ ํŒŒ์•… ๋ฐ ์ „ํŒŒ ๊ฒฝ๋กœ ๋ถ„์„์„ ์šฉ์ดํ•˜๋„๋ก ํ•ด์ค€๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์˜ ํ™•๋ฅ  ์ถ”๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ํšจ๊ณผ์ ์œผ๋กœ ์ด์ƒ ๊ฐ์ง€๊ฐ€ ์ด๋ฃจ์–ด์งˆ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ฐ˜๋ณต์  ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ํ†ตํ•ด ์–ป์–ด์ง„ ๋‹ค์ˆ˜์˜ ๋ณ€์ˆ˜ ์†Œ์ง‘๋‹จ์— ๋Œ€ํ•˜์—ฌ ๊ฐ๊ฐ ํ™•๋ฅ  ์ถ”๋ก ์„ ์ ์šฉํ•˜์—ฌ ์ด์ƒ ๊ฐ์ง€๋ฅผ ์ง„ํ–‰ํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์—์„œ๋Š” ์ปค๋„ ๋ฐ€๋„ ์ถ”์ • ๋ฐฉ๋ฒ•๋ก ์„ ํ™œ์šฉํ•˜์˜€๋‹ค. ์ •์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ฐ ๋ณ€์ˆ˜๋“ค์— ๋Œ€ํ•œ ์ปค๋„ ๋ฐ€๋„์˜ ๋Œ€์—ญํญ์„ ํ•™์Šตํ•˜๊ณ , ์ด์ƒ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ฐœ์ƒํ•  ์‹œ ์ด๋ฅผ ํ™œ์šฉํ•œ ์ปค๋„ ๋ฐ€๋„ ์ถ”์ •๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด์ƒ๊ฐ์‹œ ํ†ต๊ณ„์น˜๋ฅผ ๊ณ„์‚ฐํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋•Œ ํ—ˆ์œ„ ์ง„๋‹จ์œจ์„ 5%๋กœ ๊ฐ€์ •ํ•˜์—ฌ ๊ฐ๊ฐ์˜ ์†Œ์ง‘๋‹จ์— ๋Œ€ํ•œ ๊ณต์ • ๊ฐ์ง€ ๊ธฐ์ค€์„ ์„ ์„ค์ •ํ•˜์˜€๊ณ , ์ด์ƒ๊ฐ์‹œ ํ†ต๊ณ„์น˜๊ฐ€ ๊ณต์ • ๊ฐ์‹œ ๊ธฐ์ค€์„ ๋ณด๋‹ค ๋‚ฎ๊ฒŒ ๋  ๊ฒฝ์šฐ ์ด์ƒ์ด ๊ฐ์ง€๋œ๋‹ค. ์„ธ ๋ฒˆ์งธ๋กœ, ์ด์ƒ ๋ฐœ์ƒ ์‹œ ์›์ธ์ด ๋˜๋Š” ๋ณ€์ˆ˜์˜ ๊ฒฉ๋ฆฌ ๋ฐ ์ด์ƒ ์ „ํŒŒ ๊ฒฝ๋กœ ๋ถ„์„์„ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์—์„œ๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์˜ ํ™•๋ฅ  ์ถ”๋ก  ๊ณผ์ •์„ ํ™œ์šฉํ•˜์—ฌ ์ด์ƒ ๋ฐœ์ƒ ์‹œ ๊ฐ ๋ณ€์ˆ˜์˜ ์กฐ๊ฑด๋ถ€ ํ•œ๊ณ„ ํ™•๋ฅ ์„ ๊ณ„์‚ฐํ•˜๊ณ , ์ด๋ฅผ ํ™œ์šฉํ•ด ์ƒˆ๋กญ๊ฒŒ ์ •์˜๋œ ์กฐ๊ฑด๋ถ€ ๊ธฐ์—ฌ๋„ ๊ฐ’์„ ๊ณ„์‚ฐํ•˜์—ฌ, ์ด์ƒ์— ๋Œ€ํ•œ ๊ฐ ๋ณ€์ˆ˜์˜ ๊ธฐ์—ฌ๋„๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ๋Š” ์ปค๋„ ์‹ ๋ขฐ๋„ ์ „ํŒŒ ๋ฐฉ๋ฒ•๋ก ์ด ์‚ฌ์šฉ๋˜๋Š”๋ฐ, ์ด๋Š” ์—ฐ์† ๋ณ€์ˆ˜๋ฅผ ๊ฐ€์ง€๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์— ๋Œ€ํ•˜์—ฌ ํ™•๋ฅ  ์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์ด๋‹ค. ์ปค๋„ ์‹ ๋ขฐ๋„ ์ „ํŒŒ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋ฉด ์ •์ƒ ์ƒํƒœ์˜ ๊ณต์ • ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’๋“ค์„ ํ•™์Šตํ•˜๊ณ , ์ด์ƒ ๋ฐœ์ƒ์‹œ ์ด์ƒ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•˜์—ฌ ๊ฐ ๋ณ€์ˆ˜์˜ ์กฐ๊ฑด๋ถ€ ๊ธฐ์—ฌ๋„ ๊ฐ’์„ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ์ด ๋•Œ ๊ณ„์‚ฐ๋œ ์กฐ๊ฑด๋ถ€ ๊ธฐ์—ฌ๋„ ๊ฐ’์˜ ํฌ๊ธฐ์™€, ์ด์ƒ ๋ฐœ์ƒ ์ดํ›„ ๊ฐ ๋ณ€์ˆ˜์˜ ์กฐ๊ฑด๋ถ€ ๊ธฐ์—ฌ๋„ ๊ฐ’์˜ ๋ณ€ํ™” ๋ฐ˜์‘ ์†๋„๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ํŒ๋‹จํ•˜์—ฌ, ์ด์ƒ์˜ ์›์ธ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ๊ฒฉ๋ฆฌ์™€ ์ด์ƒ ์ „ํŒŒ ๊ฒฝ๋กœ ๋ถ„์„์„ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ œ์•ˆ๋œ ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ๋ฐฉ๋ฒ•๋ก ์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ • ๋ชจ๋ธ์— ์ด๋ฅผ ์ ์šฉํ•˜๊ณ  ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ •์€ ์ˆ˜๋…„๊ฐ„ ๊ณต์ • ๊ฐ์‹œ ๋ฐฉ๋ฒ•๋ก ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•œ ๋ฒค์น˜๋งˆํฌ ๊ณต์ •์œผ๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜์–ด ์™”๊ธฐ ๋•Œ๋ฌธ์—, ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ์ด์— ์ ์šฉํ•ด ๋ด„์œผ๋กœ์จ ๋‹ค๋ฅธ ๊ณต์ • ๊ฐ์‹œ ๋ฐฉ๋ฒ•๋ก ๋“ค๊ณผ์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•ด ๋ณผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๋‹ค์ˆ˜์˜ ๋‹จ์œ„ ๊ณต์ •์„ ํฌํ•จํ•˜๊ณ  ์žˆ๊ณ , ์ˆœํ™˜์ ์ธ ๋ณ€์ˆ˜ ๊ด€๊ณ„ ์—ญ์‹œ ํฌํ•จํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์˜ ์„ฑ๋Šฅ์„ ์‹œํ—˜ํ•ด ๋ณด๊ธฐ์— ์ ํ•ฉํ–ˆ๋‹ค. ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ • ๋‚ด๋ถ€์—๋Š” 28๊ฐœ ์ข…๋ฅ˜์˜ ์ด์ƒ์ด ํ”„๋กœ๊ทธ๋žจ ์ƒ์— ๋‚ด์žฅ๋˜์–ด ์žˆ๋Š”๋ฐ, ์ œ์‹œ๋œ ๊ณต์ • ๊ฐ์ง€ ๋ฐฉ๋ฒ•๋ก ์„ ์ ์šฉํ•œ ๊ฒฐ๊ณผ ๋ชจ๋“  ์ด์ƒ์— ๋Œ€ํ•˜์—ฌ 96% ์ด์ƒ์˜ ๋†’์€ ์ด์ƒ ๊ฐ์ง€์œจ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด์— ์ œ์‹œ๋œ ๊ณต์ • ๊ฐ์‹œ ๋ฐฉ๋ฒ•๋ก ๋“ค์— ๋น„ํ•˜์—ฌ ์›”๋“ฑํžˆ ๋†’์€ ์ˆ˜์น˜์˜€๋‹ค. ๋˜ํ•œ ์ด์ƒ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•ด ๋ณธ ๊ฒฐ๊ณผ, ๋ชจ๋“  ์ด์ƒ์— ๋Œ€ํ•˜์—ฌ ์›์ธ์ด ๋˜๋Š” ๋…ธ๋“œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , ์ด์ƒ ์ „ํŒŒ ๊ฒฝ๋กœ ์—ญ์‹œ ์ •ํ™•ํ•˜๊ฒŒ ํƒ์ง€ํ•˜์—ฌ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ๋“ค๊ณผ๋Š” ์ฐจ๋ณ„ํ™”๋œ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ •์— ์ ์šฉํ•ด ๋ด„์œผ๋กœ์จ, ๋ณธ ์—ฐ๊ตฌ ๋‚ด์šฉ์ด ๊ณต์ • ์ด์ƒ์˜ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์— ๋Œ€ํ•œ ํ†ตํ•ฉ์ ์ธ ๋ฐฉ๋ฒ•๋ก  ์ค‘์—์„œ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.Contents Abstract i Contents iv List of Tables vii List of Figures ix 1 Introduction 1 1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Markov Random Fields Modelling, Graphical Lasso, and Optimal Structure Learning 10 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Graphical Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 MRF Modelling & Structure Learning . . . . . . . . . . . . . . . . . 19 2.4.1 MRF modelling in process systems . . . . . . . . . . . . . . 19 2.4.2 Structure learning using iterative graphical lasso . . . . . . . 20 2.5 Application of Iterative Graphical Lasso on the TEP . . . . . . . . . . 24 3 Efficient Process Monitoring via the Integrated Use of Markov Random Fields Learning and the Graphical Lasso 31 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 MRF Monitoring Integrated with Graphical Lasso . . . . . . . . . . . 35 3.2.1 Step 1: Iterative graphical lasso . . . . . . . . . . . . . . . . 36 3.2.2 Step 2: MRF monitoring . . . . . . . . . . . . . . . . . . . . 36 3.3 Implementation of Glasso-MRF monitoring to the Tennessee Eastman process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 Tennessee Eastman process . . . . . . . . . . . . . . . . . . 41 3.3.2 Glasso-MRF monitoring on TEP . . . . . . . . . . . . . . . . 48 3.3.3 Fault detection accuracy comparison with other monitoring techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.3.4 Fault detection speed & fault propagation . . . . . . . . . . . 95 4 Process Fault Diagnosis via Markov Random Fields Learning and Inference 101 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.1 Probabilistic graphical models & Markov random fields . . . 106 4.2.2 Kernel belief propagation . . . . . . . . . . . . . . . . . . . . 107 4.3 Fault Diagnosis via MRF Modeling . . . . . . . . . . . . . . . . . . 113 4.3.1 MRF structure learning via graphical lasso . . . . . . . . . . 116 4.3.2 Kernel belief propagation - bandwidth selection . . . . . . . . 116 4.3.3 Conditional contribution evaluation . . . . . . . . . . . . . . 117 4.4 Application Results & Discussion . . . . . . . . . . . . . . . . . . . 118 4.4.1 Two tank process . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4.2 Tennessee Eastman process . . . . . . . . . . . . . . . . . . 137 5 Concluding Remarks 152 Bibliography 157 Nomenclature 169 Abstract (In Korean) 170Docto

    Fault diagnosis in multivariate statistical process monitoring

    Get PDF
    The application of multivariate statistical process monitoring (MSPM) methods has gained considerable momentum over the last couple of decades, especially in the processing industry for achieving higher throughput at sustainable rates, reducing safety related events and minimizing potential environmental impacts. Multivariate process deviations occur when the relationships amongst many process characteristics are different from the expected. The fault detection ability of methods such as principal component analysis (PCA) and process monitoring has been reported in literature and demonstrated in selective practical applications. However, the methodologies employed to diagnose the reason for the identified multivariate process faults have not gained the anticipated traction in practice. One explanation for this might be that the current diagnostic approaches attempt to rank process variables according to their individual contribution to process faults. However, the lack of these approaches to correctly identify the variables responsible for the process deviation is well researched and communicated in literature. Specifically, these approaches suffer from a phenomenon known as fault smearing. In this research it is argued, using several illustrations, that the objective of assigning individual importance rankings to process variables is not appropriate in a multivariate setting. A new methodology is introduced for performing fault diagnosis in multivariate process monitoring. More specifically, a multivariate diagnostic method is proposed that ranks variable pairs as opposed to individual variables. For PCA based MSPM, a novel fault diagnosis method is developed that decomposes the fault identification statistics into a sum of parts, with each part representing the contribution of a specific variable pair. An approach is also developed to quantify the statistical significance of each pairwise contribution. In addition, it is illustrated how the pairwise contributions can be analysed further to obtain an individual importance ranking of the process variables. Two methodologies are developed that can be applied to calculate the individual ranking following the pairwise contributions analysis. However, it is advised that the individual rankings should be interpreted together with the pairwise contributions. The application of this new approach to PCA based MSPM and fault diagnosis is illustrated using a simulated data set

    Data-Driven Fault Detection and Reasoning for Industrial Monitoring

    Get PDF
    This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book

    Fault Prognosis in Particle Accelerator Power Electronics Using Ensemble Learning

    Full text link
    Early fault detection and fault prognosis are crucial to ensure efficient and safe operations of complex engineering systems such as the Spallation Neutron Source (SNS) and its power electronics (high voltage converter modulators). Following an advanced experimental facility setup that mimics SNS operating conditions, the authors successfully conducted 21 fault prognosis experiments, where fault precursors are introduced in the system to a degree enough to cause degradation in the waveform signals, but not enough to reach a real fault. Nine different machine learning techniques based on ensemble trees, convolutional neural networks, support vector machines, and hierarchical voting ensembles are proposed to detect the fault precursors. Although all 9 models have shown a perfect and identical performance during the training and testing phase, the performance of most models has decreased in the prognosis phase once they got exposed to real-world data from the 21 experiments. The hierarchical voting ensemble, which features multiple layers of diverse models, maintains a distinguished performance in early detection of the fault precursors with 95% success rate (20/21 tests), followed by adaboost and extremely randomized trees with 52% and 48% success rates, respectively. The support vector machine models were the worst with only 24% success rate (5/21 tests). The study concluded that a successful implementation of machine learning in the SNS or particle accelerator power systems would require a major upgrade in the controller and the data acquisition system to facilitate streaming and handling big data for the machine learning models. In addition, this study shows that the best performing models were diverse and based on the ensemble concept to reduce the bias and hyperparameter sensitivity of individual models.Comment: 25 Pages, 13 Figures, 5 Table

    ๋งค๊ฐœ๋ถ„ํฌ๊ทผ์‚ฌ๋ฅผ ํ†ตํ•œ ๊ณต์ •์‹œ์Šคํ…œ ๊ณตํ•™์—์„œ์˜ ํ™•๋ฅ ๊ธฐ๊ณ„ํ•™์Šต ์ ‘๊ทผ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2021.8. ์ด์ข…๋ฏผ.With the rapid development of measurement technology, higher quality and vast amounts of process data become available. Nevertheless, process data are โ€˜scarceโ€™ in many cases as they are sampled only at certain operating conditions while the dimensionality of the system is large. Furthermore, the process data are inherently stochastic due to the internal characteristics of the system or the measurement noises. For this reason, uncertainty is inevitable in process systems, and estimating it becomes a crucial part of engineering tasks as the prediction errors can lead to misguided decisions and cause severe casualties or economic losses. A popular approach to this is applying probabilistic inference techniques that can model the uncertainty in terms of probability. However, most of the existing probabilistic inference techniques are based on recursive sampling, which makes it difficult to use them for industrial applications that require processing a high-dimensional and massive amount of data. To address such an issue, this thesis proposes probabilistic machine learning approaches based on parametric distribution approximation, which can model the uncertainty of the system and circumvent the computational complexity as well. The proposed approach is applied for three major process engineering tasks: process monitoring, system modeling, and process design. First, a process monitoring framework is proposed that utilizes a probabilistic classifier for fault classification. To enhance the accuracy of the classifier and reduce the computational cost for its training, a feature extraction method called probabilistic manifold learning is developed and applied to the process data ahead of the fault classification. We demonstrate that this manifold approximation process not only reduces the dimensionality of the data but also casts the data into a clustered structure, making the classifier have a low dependency on the type and dimension of the data. By exploiting this property, non-metric information (e.g., fault labels) of the data is effectively incorporated and the diagnosis performance is drastically improved. Second, a probabilistic modeling approach based on Bayesian neural networks is proposed. The parameters of deep neural networks are transformed into Gaussian distributions and trained using variational inference. The redundancy of the parameter is autonomously inferred during the model training, and insignificant parameters are eliminated a posteriori. Through a verification study, we demonstrate that the proposed approach can not only produce high-fidelity models that describe the stochastic behaviors of the system but also produce the optimal model structure. Finally, a novel process design framework is proposed based on reinforcement learning. Unlike the conventional optimization methods that recursively evaluate the objective function to find an optimal value, the proposed method approximates the objective function surface by parametric probabilistic distributions. This allows learning the continuous action policy without introducing any cumbersome discretization process. Moreover, the probabilistic policy gives means for effective control of the exploration and exploitation rates according to the certainty information. We demonstrate that the proposed framework can learn process design heuristics during the solution process and use them to solve similar design problems.๊ณ„์ธก๊ธฐ์ˆ ์˜ ๋ฐœ๋‹ฌ๋กœ ์–‘์งˆ์˜, ๊ทธ๋ฆฌ๊ณ  ๋ฐฉ๋Œ€ํ•œ ์–‘์˜ ๊ณต์ • ๋ฐ์ดํ„ฐ์˜ ์ทจ๋“์ด ๊ฐ€๋Šฅํ•ด์กŒ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋งŽ์€ ๊ฒฝ์šฐ ์‹œ์Šคํ…œ ์ฐจ์›์˜ ํฌ๊ธฐ์— ๋น„ํ•ด์„œ ์ผ๋ถ€ ์šด์ „์กฐ๊ฑด์˜ ๊ณต์ • ๋ฐ์ดํ„ฐ๋งŒ์ด ์ทจ๋“๋˜๊ธฐ ๋•Œ๋ฌธ์—, ๊ณต์ • ๋ฐ์ดํ„ฐ๋Š” โ€˜ํฌ์†Œโ€™ํ•˜๊ฒŒ ๋œ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๊ณต์ • ๋ฐ์ดํ„ฐ๋Š” ์‹œ์Šคํ…œ ๊ฑฐ๋™ ์ž์ฒด์™€ ๋”๋ถˆ์–ด ๊ณ„์ธก์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋…ธ์ด์ฆˆ๋กœ ์ธํ•œ ๋ณธ์งˆ์ ์ธ ํ™•๋ฅ ์  ๊ฑฐ๋™์„ ๋ณด์ธ๋‹ค. ๋”ฐ๋ผ์„œ ์‹œ์Šคํ…œ์˜ ์˜ˆ์ธก๋ชจ๋ธ์€ ์˜ˆ์ธก ๊ฐ’์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๊ธฐ์ˆ ํ•˜๋Š” ๊ฒƒ์ด ์š”๊ตฌ๋˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์˜ค์ง„์„ ์˜ˆ๋ฐฉํ•˜๊ณ  ์ž ์žฌ์  ์ธ๋ช… ํ”ผํ•ด์™€ ๊ฒฝ์ œ์  ์†์‹ค์„ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด์— ๋Œ€ํ•œ ๋ณดํŽธ์ ์ธ ์ ‘๊ทผ๋ฒ•์€ ํ™•๋ฅ ์ถ”์ •๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋Ÿฌํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ์ •๋Ÿ‰ํ™” ํ•˜๋Š” ๊ฒƒ์ด๋‚˜, ํ˜„์กดํ•˜๋Š” ์ถ”์ •๊ธฐ๋ฒ•๋“ค์€ ์žฌ๊ท€์  ์ƒ˜ํ”Œ๋ง์— ์˜์กดํ•˜๋Š” ํŠน์„ฑ์ƒ ๊ณ ์ฐจ์›์ด๋ฉด์„œ๋„ ๋‹ค๋Ÿ‰์ธ ๊ณต์ •๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง„๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋งค๊ฐœ๋ถ„ํฌ๊ทผ์‚ฌ์— ๊ธฐ๋ฐ˜ํ•œ ํ™•๋ฅ ๊ธฐ๊ณ„ํ•™์Šต์„ ์ ์šฉํ•˜์—ฌ ์‹œ์Šคํ…œ์— ๋‚ด์žฌ๋œ ๋ถˆํ™•์‹ค์„ฑ์„ ๋ชจ๋ธ๋งํ•˜๋ฉด์„œ๋„ ๋™์‹œ์— ๊ณ„์‚ฐ ํšจ์œจ์ ์ธ ์ ‘๊ทผ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋จผ์ €, ๊ณต์ •์˜ ๋ชจ๋‹ˆํ„ฐ๋ง์— ์žˆ์–ด ๊ฐ€์šฐ์‹œ์•ˆ ํ˜ผํ•ฉ ๋ชจ๋ธ (Gaussian mixture model)์„ ๋ถ„๋ฅ˜์ž๋กœ ์‚ฌ์šฉํ•˜๋Š” ํ™•๋ฅ ์  ๊ฒฐํ•จ ๋ถ„๋ฅ˜ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ด๋•Œ ๋ถ„๋ฅ˜์ž์˜ ํ•™์Šต์—์„œ์˜ ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ์ €์ฐจ์›์œผ๋กœ ํˆฌ์˜์‹œํ‚ค๋Š”๋ฐ, ์ด๋ฅผ ์œ„ํ•œ ํ™•๋ฅ ์  ๋‹ค์–‘์ฒด ํ•™์Šต (probabilistic manifold learn-ing) ๋ฐฉ๋ฒ•์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘์ฒด (manifold)๋ฅผ ๊ทผ์‚ฌํ•˜์—ฌ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ ์‚ฌ์ด์˜ ์Œ๋ณ„ ์šฐ๋„ (pairwise likelihood)๋ฅผ ๋ณด์กดํ•˜๋Š” ํˆฌ์˜๋ฒ•์ด ์‚ฌ์šฉ๋œ๋‹ค. ์ด๋ฅผ ํ†ตํ•˜์—ฌ ๋ฐ์ดํ„ฐ์˜ ์ข…๋ฅ˜์™€ ์ฐจ์›์— ์˜์กด๋„๊ฐ€ ๋‚ฎ์€ ์ง„๋‹จ ๊ฒฐ๊ณผ๋ฅผ ์–ป์Œ๊ณผ ๋™์‹œ์— ๋ฐ์ดํ„ฐ ๋ ˆ์ด๋ธ”๊ณผ ๊ฐ™์€ ๋น„๊ฑฐ๋ฆฌ์  (non-metric) ์ •๋ณด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ๊ฒฐํ•จ ์ง„๋‹จ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ๋‘˜์งธ๋กœ, ๋ฒ ์ด์ง€์•ˆ ์‹ฌ์ธต ์‹ ๊ฒฝ๋ง(Bayesian deep neural networks)์„ ์‚ฌ์šฉํ•œ ๊ณต์ •์˜ ํ™•๋ฅ ์  ๋ชจ๋ธ๋ง ๋ฐฉ๋ฒ•๋ก ์ด ์ œ์‹œ๋˜์—ˆ๋‹ค. ์‹ ๊ฒฝ๋ง์˜ ๊ฐ ๋งค๊ฐœ๋ณ€์ˆ˜๋Š” ๊ฐ€์šฐ์Šค ๋ถ„ํฌ๋กœ ์น˜ํ™˜๋˜๋ฉฐ, ๋ณ€๋ถ„์ถ”๋ก  (variational inference)์„ ํ†ตํ•˜์—ฌ ๊ณ„์‚ฐ ํšจ์œจ์ ์ธ ํ›ˆ๋ จ์ด ์ง„ํ–‰๋œ๋‹ค. ํ›ˆ๋ จ์ด ๋๋‚œ ํ›„ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์œ ํšจ์„ฑ์„ ์ธก์ •ํ•˜์—ฌ ๋ถˆํ•„์š”ํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์†Œ๊ฑฐํ•˜๋Š” ์‚ฌํ›„ ๋ชจ๋ธ ์••์ถ• ๋ฐฉ๋ฒ•์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋ฐ˜๋„์ฒด ๊ณต์ •์— ๋Œ€ํ•œ ์‚ฌ๋ก€ ์—ฐ๊ตฌ๋Š” ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ๊ณต์ •์˜ ๋ณต์žกํ•œ ๊ฑฐ๋™์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋ง ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ชจ๋ธ์˜ ์ตœ์  ๊ตฌ์กฐ๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ถ„ํฌํ˜• ์‹ฌ์ธต ์‹ ๊ฒฝ๋ง์„ ์‚ฌ์šฉํ•œ ๊ฐ•ํ™”ํ•™์Šต์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํ™•๋ฅ ์  ๊ณต์ • ์„ค๊ณ„ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ตœ์ ์น˜๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด ์žฌ๊ท€์ ์œผ๋กœ ๋ชฉ์  ํ•จ์ˆ˜ ๊ฐ’์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ธฐ์กด์˜ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋ก ๊ณผ ๋‹ฌ๋ฆฌ, ๋ชฉ์  ํ•จ์ˆ˜ ๊ณก๋ฉด (objective function surface)์„ ๋งค๊ฐœํ™” ๋œ ํ™•๋ฅ ๋ถ„ํฌ๋กœ ๊ทผ์‚ฌํ•˜๋Š” ์ ‘๊ทผ๋ฒ•์ด ์ œ์‹œ๋˜์—ˆ๋‹ค. ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ด์‚ฐํ™” (discretization)๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์—ฐ์†์  ํ–‰๋™ ์ •์ฑ…์„ ํ•™์Šตํ•˜๋ฉฐ, ํ™•์‹ค์„ฑ (certainty)์— ๊ธฐ๋ฐ˜ํ•œ ํƒ์ƒ‰ (exploration) ๋ฐ ํ™œ์šฉ (exploi-tation) ๋น„์œจ์˜ ์ œ์–ด๊ฐ€ ํšจ์œจ์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค. ์‚ฌ๋ก€ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ๊ณต์ •์˜ ์„ค๊ณ„์— ๋Œ€ํ•œ ๊ฒฝํ—˜์ง€์‹ (heuristic)์„ ํ•™์Šตํ•˜๊ณ  ์œ ์‚ฌํ•œ ์„ค๊ณ„ ๋ฌธ์ œ์˜ ํ•ด๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐ ์ด์šฉํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.Chapter 1 Introduction 1 1.1. Motivation 1 1.2. Outline of the thesis 5 Chapter 2 Backgrounds and preliminaries 9 2.1. Bayesian inference 9 2.2. Monte Carlo 10 2.3. Kullback-Leibler divergence 11 2.4. Variational inference 12 2.5. Riemannian manifold 13 2.6. Finite extended-pseudo-metric space 16 2.7. Reinforcement learning 16 2.8. Directed graph 19 Chapter 3 Process monitoring and fault classification with probabilistic manifold learning 20 3.1. Introduction 20 3.2. Methods 25 3.2.1. Uniform manifold approximation 27 3.2.2. Clusterization 28 3.2.3. Projection 31 3.2.4. Mapping of unknown data query 32 3.2.5. Inference 33 3.3. Verification study 38 3.3.1. Dataset description 38 3.3.2. Experimental setup 40 3.3.3. Process monitoring 43 3.3.4. Projection characteristics 47 3.3.5. Fault diagnosis 50 3.3.6. Computational Aspects 56 Chapter 4 Process system modeling with Bayesian neural networks 59 4.1. Introduction 59 4.2. Methods 63 4.2.1. Long Short-Term Memory (LSTM) 63 4.2.2. Bayesian LSTM (BLSTM) 66 4.3. Verification study 68 4.3.1. System description 68 4.3.2. Estimation of the plasma variables 71 4.3.3. Dataset description 72 4.3.4. Experimental setup 72 4.3.5. Weight regularization during training 78 4.3.6. Modeling complex behaviors of the system 80 4.3.7. Uncertainty quantification and model compression 85 Chapter 5 Process design based on reinforcement learning with distributional actor-critic networks 89 5.1. Introduction 89 5.2. Methods 93 5.2.1. Flowsheet hashing 93 5.2.2. Behavioral cloning 99 5.2.3. Neural Monte Carlo tree search (N-MCTS) 100 5.2.4. Distributional actor-critic networks (DACN) 105 5.2.5. Action masking 110 5.3. Verification study 110 5.3.1. System description 110 5.3.2. Experimental setup 111 5.3.3. Result and discussions 115 Chapter 6 Concluding remarks 120 6.1. Summary of the contributions 120 6.2. Future works 122 Appendix 125 A.1. Proof of Lemma 1 125 A.2. Performance indices for dimension reduction 127 A.3. Model equations for process units 130 Bibliography 132 ์ดˆ ๋ก 149๋ฐ•

    Observability and Economic aspects of Fault Detection and Diagnosis Using CUSUM based Multivariate Statistics

    Get PDF
    This project focuses on the fault observability problem and its impact on plant performance and profitability. The study has been conducted along two main directions. First, a technique has been developed to detect and diagnose faulty situations that could not be observed by previously reported methods. The technique is demonstrated through a subset of faults typically considered for the Tennessee Eastman Process (TEP); which have been found unobservable in all previous studies. The proposed strategy combines the cumulative sum (CUSUM) of the process measurements with Principal Component Analysis (PCA). The CUSUM is used to enhance faults under conditions of small fault/signal to noise ratio while the use of PCA facilitates the filtering of noise in the presence of highly correlated data. Multivariate indices, namely, T2 and Q statistics based on the cumulative sums of all available measurements were used for observing these faults. The ARLo.c was proposed as a statistical metric to quantify fault observability. Following the faults detection, the problem of fault isolation is treated. It is shown that for the particular faults considered in the TEP problem, the contribution plots are not able to properly isolate the faults under consideration. This motivates the use of the CUSUM based PCA technique previously used for detection, for unambiguously diagnose the faults. The diagnosis scheme is performed by constructing a family of CUSUM based PCA models corresponding to each fault and then testing whether the statistical thresholds related to a particular faulty model is exceeded or not, hence, indicating occurrence or absence of the corresponding fault. Although the CUSUM based techniques were found successful in detecting abnormal situations as well as isolating the faults, long time intervals were required for both detection and diagnosis. The potential economic impact of these resulting delays motivates the second main objective of this project. More specifically, a methodology to quantify the potential economical loss due to unobserved faults when standard statistical monitoring charts are used is developed. Since most of the chemical and petrochemical plants are operated under closed loop scheme, the interaction of the control is also explicitly considered. An optimization problem is formulated to search for the optimal tradeoff between fault observability and closed loop performance. This optimization problem is solved in the frequency domain by using approximate closed loop transfer function models and in the time domain using a simulation based approach. The optimization in the time domain is applied to the TEP to solve for the optimal tuning parameters of the controllers that minimize an economic cost of the process

    Data-Driven Fault Detection and Reasoning for Industrial Monitoring

    Get PDF
    This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book

    Sensor Fault Detection and Isolation System

    Get PDF
    The purpose of this research is to develop a Fault Detection and Isolation (FDI) system which is capable to diagnosis multiple sensor faults in nonlinear cases. In order to lead this study closer to real world applications in oil industries, the system parameters of the applied system are assumed to be unknown. In the first step of the proposed method, phase space reconstruction techniques are used to reconstruct the phase space of the applied system. This step is aimed to infer the system property by the collected sensor measurements. The second step is to use the reconstructed phase space to predict future sensor measurements, and residual signals are generated by comparing the actually measured measurements to the predicted measurements. Since, in practice, residual signals will not perfectly equal to zero in the fault-free situation, Multiple Hypothesis Shiryayev Sequential Probability Test (MHSSPT) is introduced to further process those residual signals, and the diagnostic results are presented in probability. In addition, the proposed method is extended to a non-stationary case by using the conservation/dissipation property in phase space. The proposed method is examined by both of simulated data and real process data to support that it is capable of detecting and isolating multiple sensor faults in nonlinear cases. In the section of simulation results, a three tank model is introduced for generating simulated data. The three tank model is modeled according to a nonlinear laboratory setup DTS200. On the other hand, in the section of experimental results, the real process data collected from a sugar factory actuator system are used to examine the proposed method. According to our results obtained from simulations and experiments, the proposed method is capable to indicate both of healthy and faulty situations. These results further confirm that the proposed method is able to deal with not only simulated data but also real process data

    Towards system-level prognostics : Modeling, uncertainty propagation and system remaining useful life prediction

    Get PDF
    Prognostics is the process of predicting the remaining useful life (RUL) of components, subsystems, or systems. However, until now, the prognostics has often been approached from a component view without considering interactions between components and effects of the environment, leading to a misprediction of the complex systems failure time. In this work, a prognostics approach to system-level is proposed. This approach is based on a new modeling framework: the inoperability input-output model (IIM), which allows tackling the issue related to the interactions between components and the mission profile effects and can be applied for heterogeneous systems. Then, a new methodology for online joint system RUL (SRUL) prediction and model parameter estimation is developed based on particle filtering (PF) and gradient descent (GD). In detail, the state of health of system components is estimated and predicted in a probabilistic manner using PF. In the case of consecutive discrepancy between the prior and posterior estimates of the system health state, the proposed estimation method is used to correct and to adapt the IIM parameters. Finally, the developed methodology is verified on a realistic industrial system: The Tennessee Eastman Process. The obtained results highlighted its effectiveness in predicting the SRUL in reasonable computing time
    • โ€ฆ
    corecore