142 research outputs found

    Modeling and Simulation of Vehicle to Vehicle and Infrastructure Communication in Realistic Large Scale Urban Area

    Get PDF
    During the last decades, Intelligent Transportation System (ITS) has progressed at a rapid rate, which aim to improve transportation activities in terms of safety and efficiency. Car to Car or Vehicle-to-Vehicle (V2V) communications and Car/Vehicle-to-Infrastructure (I2V or V2I) communications are important components of the ITS architecture. Communication between cars is often referred to Vehicular Ad-Hoc Networks (VANET) and it has many advantages such as: reducing cars accidents, minimizing the traffic jam, reducing fuel consumption and emissions and etc. VANET architectures have been standardized in the IEEE-802.11p specification. For a closer look on V2V and V2I studies, the necessity of simulations is obvious. Network simulators can simulate the ad-hoc network but they cannot simulate the huge traffic of cities. In order to solve this problem, this thesis studies the Veins framework which is used to run a traffic (SUMO) and a network (OMNET++) simulator in parallel and simulates the realistic traffics of the city of Cologne, Germany, as an ad-hoc network. Several different simulations and performance analyses have been done to investigate the ability of different VANET applications. In the simulations, cars move in the real map of the city of Cologne and communicate with each other and also with RoadSideUnits with using IEEE 802.11p standard. Then, Probability of Beacons Delivery (PBD) in different area of a real city are calculated and also are compared with the analytical model. This study is the first research performed on calculating PBD of IEEE 802.11p in realistic large urban area. Then, the thesis focuses on modelling and analysis of the applications of the V2I in real city. In these sections, two different simulations of application of the VANET are done by developing the Veins framework and also by developing two new programs written in Python which are connected to SUMO and control the real traffic simulation. One program simulates a real city with intelligent traffic lights for decreasing response time of emergency vehicles by using V2I. The results show that using V2I communication based on 802.11p between emergency cars and traffic lights can decrease the response time of emergency cars up to 70%. Another program, simulates dynamic route planning in real traffic simulation which is used V2I and V2V communication. The result of this simulation show the capability of V2V and V2I to decrease the traveling time, fuel consumptions and emissions of the cars in the city

    Modeling and Simulation of Vehicle to Vehicle and Infrastructure Communication in Realistic Large Scale Urban Area

    Get PDF
    During the last decades, Intelligent Transportation System (ITS) has progressed at a rapid rate, which aim to improve transportation activities in terms of safety and efficiency. Car to Car or Vehicle-to-Vehicle (V2V) communications and Car/Vehicle-to-Infrastructure (I2V or V2I) communications are important components of the ITS architecture. Communication between cars is often referred to Vehicular Ad-Hoc Networks (VANET) and it has many advantages such as: reducing cars accidents, minimizing the traffic jam, reducing fuel consumption and emissions and etc. VANET architectures have been standardized in the IEEE-802.11p specification. For a closer look on V2V and V2I studies, the necessity of simulations is obvious. Network simulators can simulate the ad-hoc network but they cannot simulate the huge traffic of cities. In order to solve this problem, this thesis studies the Veins framework which is used to run a traffic (SUMO) and a network (OMNET++) simulator in parallel and simulates the realistic traffics of the city of Cologne, Germany, as an ad-hoc network. Several different simulations and performance analyses have been done to investigate the ability of different VANET applications. In the simulations, cars move in the real map of the city of Cologne and communicate with each other and also with RoadSideUnits with using IEEE 802.11p standard. Then, Probability of Beacons Delivery (PBD) in different area of a real city are calculated and also are compared with the analytical model. This study is the first research performed on calculating PBD of IEEE 802.11p in realistic large urban area. Then, the thesis focuses on modelling and analysis of the applications of the V2I in real city. In these sections, two different simulations of application of the VANET are done by developing the Veins framework and also by developing two new programs written in Python which are connected to SUMO and control the real traffic simulation. One program simulates a real city with intelligent traffic lights for decreasing response time of emergency vehicles by using V2I. The results show that using V2I communication based on 802.11p between emergency cars and traffic lights can decrease the response time of emergency cars up to 70%. Another program, simulates dynamic route planning in real traffic simulation which is used V2I and V2V communication. The result of this simulation show the capability of V2V and V2I to decrease the traveling time, fuel consumptions and emissions of the cars in the city

    Routing and Applications of Vehicular Named Data Networking

    Get PDF
    Vehicular Ad hoc NETwork (VANET) allows vehicles to exchange important informationamong themselves and has become a critical component for enabling smart transportation.In VANET, vehicles are more interested in content itself than from which vehicle the contentis originated. Named Data Networking (NDN) is an Internet architecture that concentrateson what the content is rather than where the content is located. We adopt NDN as theunderlying communication paradigm for VANET because it can better address a plethora ofproblems in VANET, such as frequent disconnections and fast mobility of vehicles. However,vehicular named data networking faces the problem of how to efficiently route interestpackets and data packets. To address the problem, we propose a new geographic routing strategy of applying NDNin vehicular networks with Delay Tolerant Networking (DTN) support, called GeoDTN-NDN. We designed a hybrid routing mechanism for solving the flooding issue of forwardinginterest packets and the disruption problem of delivering data packets. To avoid disruptionscaused by routing packets over less-traveled roads, we develop a new progressive segmentrouting approach that takes into consideration how vehicles are distributed among differentroads, with the goal of favoring well-traveled roads. A novel criterion for determiningprogress of routing is designed to guarantee that the destination will be reached no matterwhether a temporary loop may be formed in the path. We also investigate applications of vehicular named data networking. We categorizethese applications into four types and design an NDN naming scheme for them. We proposea fog-computing based architecture to support the smart parking application, which enablesa driver to find a parking lot with available parking space and make reservation for futureparking need. Finally we describe several future research directions for vehicular nameddata networking

    2011 IEEE Vehicular Networking Conference (VNC): Demo Summaries

    Get PDF

    Contribution to design a communication framework for vehicular ad hoc networks in urban scenarios

    Get PDF
    The constant mobility of people, the growing need to be always connected, the large number of vehicles that nowadays can be found in the roads and the advances in technology make Vehicular Ad hoc Networks (VANETs) be a major area of research. Vehicular Ad hoc Networks are a special type of wireless Mobile Ad hoc Networks (MANETs), which allow a group of mobile nodes configure a temporary network and maintain it without the need of a fixed infrastructure. A vehicular network presents some specific characteristics, as the very high speed of nodes. Due to this high speed the topology changes are frequent and the communication links may last only a few seconds. Smart cities are now a reality and have a direct relationship with vehicular networks. With the help of existing infrastructure such as traffic lights, we propose a scheme to update and analyse traffic density and a warning system to spread alert messages. With this, traffic lights assist vehicular networks to take proper decisions. This would ensure less congested streets. It would also be possible that the routing protocol forwards data packets to vehicles on streets with enough neighbours to increase the possibility of delivering the packets to destination. Sharing updated, reliable and real-time information, about traffic conditions, weather or security alerts, increases the need of algorithms for the dissemination of information that take into account the main beneffits and constraints of these networks. For all this, routing protocols for vehicular networks have the difficult task to select and establish transmission links to send the data packets from source to destination through multiple nodes using intermediate vehicles efficiently. The main objective of this thesis is to provide improvements in the communication framework for vehicular networks to improve decisions to select next hops in the moment to send information, in this way improving the exchange of information to provide suitable communication to minimize accidents, reduce congestion, optimize resources for emergencies, etc. Also, we include intelligence to vehicles at the moment to take routing decisions. Making them map-aware, being conscious of the presence of buildings and other obstacles in urban environments. Furthermore, our proposal considers the decision to store packets for a maximum time until finding other neighbouring nodes to forward the packets before discarding them. For this, we propose a protocol that considers multiple metrics that we call MMMR (A Multimetric, Map-Aware Routing Protocol ). MMMR is a protocol based on geographical knowledge of the environment and vehicle location. The metrics considered are the distance, the density of vehicles in transmission range, the available bandwidth and the future trajectory of the neighbouring nodes. This allows us to have a complete view of the vehicular scenario to anticipate the driver about possible changes that may occur. Thus, a node can select a node among all its neighbours, which is the best option to increase the likelihood of successful packet delivery, minimizing time and offering a level of quality and service. In the same way, being aware of the increase of information in wireless environments, we analyse the possibility of offering anonymity services. We include a mechanism of anonymity in routing protocols based on the Crowd algorithm, which uses the idea of hiding the original source of a packet. This allowed us to add some level of anonymity on VANET routing protocols. The analytical modeling of the available bandwidth between nodes in a VANET, the use of city infrastructure in a smart way, the forwarding selection in data routing byvehicles and the provision of anonymity in communications, are issues that have been addressed in this PhD thesis. In our research work we provide contributions to improve the communication framework for Vehicular Ad hoc Networks obtaining benefits toenhance the everyday of the population.La movilidad constante de las personas y la creciente necesidad de estar conectados en todo momento ha hecho de las redes vehiculares un área cuyo interés ha ido en aumento. La gran cantidad de vehículos que hay en la actualidad, y los avances tecnológicos han hecho de las redes vehiculares (VANETS, Vehicular Ad hoc Networks) un gran campo de investigación. Las redes vehiculares son un tipo especial de redes móviles ad hoc inalámbricas, las cuales, al igual que las redes MANET (Mobile Ad hoc Networks), permiten a un grupo de nodos móviles tanto configurar como mantener una red temporal por si mismos sin la necesidad de una infraestructura fija. Las redes vehiculares presentan algunas características muy representativas, por ejemplo, la alta velocidad que pueden alcanzar los nodos, en este caso vehículos. Debido a esta alta velocidad la topología cambia frecuentemente y la duración de los enlaces de comunicación puede ser de unos pocos segundos. Estas redes tienen una amplia área de aplicación, pudiendo tener comunicación entre los mismos nodos (V2V) o entre los vehículos y una infraestructura fija (V2I). Uno de los principales desafíos existentes en las VANET es la seguridad vial donde el gobierno y fabricantes de automóviles han centrado principalmente sus esfuerzos. Gracias a la rápida evolución de las tecnologías de comunicación inalámbrica los investigadores han logrado introducir las redes vehiculares dentro de las comunicaciones diarias permitiendo una amplia variedad de servicios para ofrecer. Las ciudades inteligentes son ahora una realidad y tienen una relación directa con las redes vehiculares. Con la ayuda de la infraestructura existente, como semáforos, se propone un sistema de análisis de densidad de tráfico y mensajes de alerta. Con esto, los semáforos ayudan a la red vehicular en la toma de decisiones. Así se logrará disponer de calles menos congestionadas para hacer una circulación más fluida (lo cual disminuye la contaminación). Además, sería posible que el protocolo de encaminamiento de datos elija vehículos en calles con suficientes vecinos para incrementar la posibilidad de entregar los paquetes al destino (minimizando pérdidas de información). El compartir información actualizada, confiable y en tiempo real sobre el estado del tráfico, clima o alertas de seguridad, aumenta la necesidad de algoritmos de difusión de la información que consideren los principales beneficios y restricciones de estas redes. Así mismo, considerar servicios críticos que necesiten un nivel de calidad y servicio es otro desafío importante. Por todo esto, un protocolo de encaminamiento para este tipo de redes tiene la difícil tarea de seleccionar y establecer enlaces de transmisión para enviar los datos desde el origen hacia el destino vía múltiples nodos utilizando vehículos intermedios de una manera eficiente. El principal objetivo de esta tesis es ofrecer mejoras en los sistemas de comunicación vehicular que mejoren la toma de decisiones en el momento de realizar el envío de la información, con lo cual se mejora el intercambio de información para poder ofrecer comunicación oportuna que minimice accidentes, reduzca atascos, optimice los recursos destinados a emergencias, etc. Así mismo, incluimos más inteligencia a los coches en el momento de tomar decisiones de encaminamiento de paquetes. Haciéndolos conscientes de la presencia de edificios y otros obstáculos en los entornos urbanos. Así como tomar la decisión de guardar paquetes durante un tiempo máximo de modo que se encuentre otros nodos vecinos para encaminar paquetes de información antes de descartarlo. Para esto, proponemos un protocolo basado en múltiples métricas (MMMR, A Multimetric, Map-aware Routing Protocol ) que es un protocolo geográfio basado en el conocimiento del entorno y localización de los vehículos. Las métricas consideradas son la distancia, la densidad de vehículos en el área de transmisión, el ancho de banda disponible y la trayectoria futura de los nodos vecinos. Esto nos permite tener una visión completa del escenario vehicular y anticiparnos a los posibles cambios que puedan suceder. Así, un nodo podrá seleccionar aquel nodo entre todos sus vecinos posibles que sea la mejor opción para incrementar la posibilidad de entrega exitosa de paquetes, minimizando tiempos y ofreciendo un cierto nivel de calidad y servicio. De la misma manera, conscientes del incremento de información que circula por medios inalámbricos, se analizó la posibilidad de servicios de anonimato. Incluimos pues un mecanismo de anonimato en protocolos de encaminamiento basado en el algoritmo Crowd, que se basa en la idea de ocultar la fuente original de un paquete. Esto nos permitió añadir cierto nivel de anonimato que pueden ofrecer los protocolos de encaminamiento. El modelado analítico del ancho de banda disponible entre nodos de una VANET, el uso de la infraestructura de la ciudad de una manera inteligente, la adecuada toma de decisiones de encaminamiento de datos por parte de los vehículos y la disposición de anonimato en las comunicaciones, son problemas que han sido abordados en este trabajo de tesis doctoral que ofrece contribuciones a la mejora de las comunicaciones en redes vehiculares en entornos urbanos aportando beneficios en el desarrollo de la vida diaria de la población

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Contribution to the design of VANET routing protocols for realistic urban environments

    Get PDF
    One of the main concerns of the cities' administration is mobility management. In Intelligent Transportation Systems (ITS), pedestrians, vehicles and public transportation systems could share information and react to any situation in the city. The information sensed by vehicles could be useful for other vehicles and for the mobility authorities. Vehicular Ad hoc Networks (VANETs) make possible the communication between vehicles (V2I) and also between vehicles and fixed infrastructure (V2I) managed by the city's authorities. In addition, VANET routing protocols minimize the use of fixed infrastructure since they employ multi-hop V2V communication to reach reporting access points of the city. This thesis aims to contribute in the design of VANET routing protocols to enable reporting services (e.g., vehicular traffic notifications) in urban environments. The first step to achieve this global objective has been the study of components and tools to mimic a realistic VANET scenario. Moreover, we have analyzed the impact of the realism of each one of those components in the simulation results. Then, we have improved the Address Resolution procedure in VANETs by including it in the routing signaling messages. Our approach simplifies the VANET operation and increases the packet delivery ratio as consequence. Afterwards, we have tackled the issue of having duplicate packets in unicast communications and we have proposed routing filters to lower their presence. This way we have been able to increase the available bandwidth and reduce the average packet delay with a slight increase of the packet losses. Besides, we have proposed a Multi-Metric Map aware routing protocol (MMMR) that incorporates four routing metrics (distance, trajectory, vehicle density and available bandwidth) to take the forwarding decisions. With the aim of increasing the number of delivered packets in MMMR, we have developed a Geographical Heuristic Routing (GHR) algorithm. GHR integrates Tabu and Simulated Annealing heuristic optimization techniques to adapt its behavior to the specific scenario characteristics. GHR is generic because it could use any geographical routing protocol to take the forwarding decisions. Additionally, we have designed an easy to implement forwarding strategy based on an extended topology information area of two hops, called 2-hops Geographical Anycast Routing (2hGAR) protocol. Results show that controlled randomness introduced by GHR improves the default operation of MMMR. On the other hand, 2hGAR presents lower delays than GHR and higher packet delivery ratio, especially in high density scenarios. Finally, we have proposed two mixed (integer and linear) optimization models to detect the best positions in the city to locate the Road Side Units (RSUs) which are in charge of gathering all the reporting information generated by vehicles.Una de las principales preocupaciones en la administración de las ciudades es la gestión de la movilidad de sus vehículos, debido a los problemas de tráfico como atascos y accidentes. En los sistemas inteligentes de transporte (SIT), peatones, vehículos y transporte público podrán compartir información y adaptarse a cualquier situación que suceda en la ciudad. La información obtenida por los sensores de los vehículos puede ser útil para otros vehículos y para las autoridades de movilidad. Las redes ad hoc vehiculares (VANETs) hacen posible la comunicación entre los propios vehículos (V2V) y entre vehículos y la infraestructura fija de la red de la ciudad (V2I). Asimismo, los protocolos de encaminamiento para redes vehiculares minimizan el uso de infraestructura fija de red, ya que los protocolos de encaminamiento VANET emplean comunicaciones multisalto entre vehículos para encaminar los mensajes hasta los puntos de acceso de la red en la ciudad. El objetivo de esta tesis doctoral es contribuir en el diseño de protocolos de encaminamiento en redes ad hoc vehiculares para servicios de notificaciones (p.ej. reportes del estado del tráfico) en entornos urbanos. El primer paso para alcanzar este objetivo general ha sido el estudio de componentes y herramientas para simular un escenario realista de red ad hoc vehicular. Además, se ha analizado el impacto del nivel de realismo de cada uno de los componentes de simulación en los resultados obtenidos. Así también, se ha propuesto un mecanismo de resolución de direcciones automático y coherente para redes VANET a través del uso de los propios mensajes de señalización de los protocolos de encaminamiento. Esta mejora simplifica la operación de una red ad hoc vehicular y como consecuencia aumenta la tasa de recepción de paquetes. A continuación, se ha abordado el problema de la aparición inesperada de paquetes de datos duplicados en una comunicación punto a punto. Para ello, se ha propuesto el filtrado de paquetes duplicados a nivel del protocolo de encaminamiento. Esto ha producido un incremento del ancho disponible en el canal y una reducción del retardo medio en la trasmisión de un paquete, a costa de un mínimo aumento de la pérdida de paquetes. Por otra parte, hemos propuesto un protocolo de encaminamiento multi-métrica MMMR (Multi-Metric Map-aware Routing protocol), el cual incorpora cuatro métricas (distancia al destino, trayectoria, densidad de vehículos y ancho de banda) en las decisiones de encaminamiento. Con el objetivo de aumentar la tasa de entrega de paquetes en MMMR, hemos desarrollado un algoritmo heurístico de encaminamiento geográfico denominado GHR (Geographical Heuristic Routing). Esta propuesta integra las técnicas de optimización Tabu y Simulated Annealing, que permiten a GHR adaptarse a las características específicas del escenario. Adicionalmente, hemos propuesto 2hGAR (2-hops Geographical Anycast Routing), un protocolo de encaminamiento anycast que emplea información de la topología de red a dos saltos de distancia para tomar la decisión de encaminamiento de los mensajes. Los resultados muestran que la aleatoriedad controlada de GHR en su operación mejora el rendimiento de MMMR. Asimismo, 2hGAR presenta retardos de paquete menores a los obtenidos por GHR y una mayor tasa de paquetes entregados, especialmente en escenarios con alta densidad de vehículos. Finalmente, se han propuesto dos modelos de optimización mixtos (enteros y lineales) para detectar los mejores lugares de la ciudad donde ubicar los puntos de acceso de la red, los cuales se encargan de recolectar los reportes generados por los vehículos.Postprint (published version

    Distributed Data Management in Vehicular Networks Using Mobile Agents

    Get PDF
    En los últimos años, las tecnologías de la información y las comunicaciones se han incorporado al mundo de la automoción gracias a sus avances, y han permitido la creación de dispositivos cada vez más pequeños y potentes. De esta forma, los vehículos pueden ahora incorporar por un precio asequible equipos informáticos y de comunicaciones.En este escenario, los vehículos que circulan por una determinada zona (como una ciudad o una autopista) pueden comunicarse entre ellos usando dispositivos inalámbricos que les permiten intercambiar información con otros vehículos cercanos, formando así una red vehicular ad hoc, o VANET (Vehicular Ad hoc Network). En este tipo de redes, las comunicaciones se establecen con conexiones punto a punto por medio de dispositivos tipo Wi-Fi, que permiten la comunicación con otros del mismo tipo dentro de su alcance, sin que sea necesaria la existencia previa de una infraestructura de comunicaciones como ocurre con las tecnologías de telefonía móvil (como 3G/4G), que además requieren de una suscripción y el pago de una tarifa para poder usarlas.Cada vehículo puede enviar información y recibirla de diversos orígenes, como el propio vehículo (por medio de los sensores que lleva incorporados), otros vehículos que se encuentran cerca, así como de la infraestructura de tráfico presente en las carreteras (como semáforos, señales, paneles electrónicos de información, cámaras de vigilancia, etc.). Todos estas fuentes pueden transmitir datos de diversa índole, como información de interés para los conductores (por ejemplo, atascos de tráfico o accidentes en la vía), o de cualquier otro tipo, mientras sea posible digitalizarla y enviarla a través de una red.Todos esos datos pueden ser almacenados localmente en los ordenadores que llevan los vehículos a medida que son recibidos, y sería muy interesante poder sacarles partido por medio de alguna aplicación que los explotara. Por ejemplo, podrían utilizarse los vehículos como plataformas móviles de sensores que obtengan datos de los lugares por los que viajan. Otro ejemplo de aplicación sería la de ayudar a encontrar plazas de aparcamiento libres en una zona de una ciudad, usando la información que suministrarían los vehículos que dejan una plaza libre.Con este fin, en esta tesis se ha desarrollado una propuesta de la gestión de datos basada en el uso de agentes móviles para poder hacer uso de la información presente en una VANET de forma eficiente y flexible. Esta no es una tarea trivial, ya que los datos se encuentran dispersos entre los vehículos que forman la red, y dichos vehículos están constantemente moviéndose y cambiando de posición. Esto hace que las conexiones de red establecidas entre ellos sean inestables y de corta duración, ya que están constantemente creándose y destruyéndose a medida que los vehículos entran y salen del alcance de sus comunicaciones debido a sus movimientos.En un escenario tan complicado, la aproximación que proponemos permite que los datos sean localizados, y que se puedan hacer consultas sobre ellos y transmitirlos de un sitio cualquiera de la VANET a otro, usando estrategias multi-salto que se adaptan a las siempre cambiantes posiciones de los vehículos. Esto es posible gracias a la utilización de agentes móviles para el procesamiento de datos, ya que cuentan con una serie de propiedades (como su movilidad, autonomía, adaptabilidad, o inteligencia), que hace que sean una elección muy apropiada para este tipo de entorno móvil y con un elevado grado de incertidumbre.La solución propuesta ha sido extensamente evaluada y probada por medio de simulaciones, que demuestran su buen rendimiento y fiabilidad en redes vehiculares con diferentes condiciones y en diversos escenarios.<br /
    corecore