486 research outputs found

    MR-based pseudo-CT generation using water-fat decomposition and Gaussian mixture regression

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2017O uso de tomografia computorizada (CT) é considerado como a prática clínica adequada para aplicações clínicas onde a simulação da atenuação de radiação pelos tecidos corporais é necessária, tais como a correcção de atenuação dos fotões em Tomografia de Emissão de Positrões (PET) e no cálculo da dosagem a ser administrada durante o planeamento de radioterapia (RTP). Imagens de ressonância magnética (MRI) têm vindo a substituir o uso de TC em algumas aplicações, sobretudo devido ao seu superior contraste entre tecidos moles e ao facto de não usar radiação ionizante. Desta forma, técnicas como PET-MRI e o planeamento de radioterapia apenas com recurso a imagens de ressonância magnética são alvo de uma crescente atenção. No entanto, estas técnicas estão limitadas pelo facto de imagens de ressonância magnética não fornecerem informação acerca da atenuação e absorção de radiação pelos tecidos. Normalmente, de forma a solucionar este problema, uma imagem de tomografia computorizada é adquirida de forma a realizar a correcção da atenuação dos fotões, assim como a dose a ser entregue em radioterapia. No entanto, esta prática introduz erros aquando do alinhamento entre as imagens de MRI e CT, que serão propagados durante todo o procedimento. Por outro lado, o uso de radiação ionizante e os custos adicionais e tempo de aquisição associado à obtenção de múltiplas modalidades de imagem limitam a aplicação clínica destas práticas. Assim, o seguimento natural prende-se com a completa substituição do uso de CT por MRI. Desta forma, o desenvolvimento de um método para a obtenção de uma imagem equivalente a CT usando MRI é necessário, sendo a imagem resultante designada de pseudo-CT. Vários métodos foram desenvolvidos de forma a construir pseudo-CT, usando métodos baseados na anatomia do paciente ou em métodos de regressão entre CT e MRI. No entanto, no primeiro caso, erros significativos são frequentes devido ao difícil alinhamento entre as imagens em casos em que a geometria do paciente é muito diferente da presente no atlas. No segundo caso, a ausência de sinal no osso cortical em MRI, torna-o indistinguível do ar. Sequências que usam um tempo de eco muito curto são normalmente utilizadas para distinguir osso cortical de ar. No entanto, para áreas com maior dimensão, como a área pélvica, dificuldades relacionadas com o equipamento e com o ruído limitam a sua aplicação nestas áreas. Por outro lado, estes métodos utilizam frequentemente diferentes imagens de MRI de forma a obter diferentes contrastes, aumentando assim o tempo de aquisição das imagens. Nesta dissertação, é proposto um método para a obtenção de um pseudo-CT baseado na combinação de um algoritmo de decomposição de água e gordura e um modelo de regressão de mistura gaussiana para a região pélvica através da aquisição de sequências de MRI convencionais. Desta forma, a aquisição de diferentes contrastes é obtida por pós-processamento das imagens originais. Desta forma, uma imagem ponderada em T1 foi adquirida com 3 tempos de eco. Um algoritmo de decomposição do sinal de ressonância magnética em sinal proveniente de água e gordura foi utilizado, permitindo a obtenção de duas imagens, cada uma representando apenas o sinal da água e gordura, respectivamente. Usando estas duas imagens, uma imagem da fracção de gordura em cada voxel foi também calculada. Por outro lado, usando o primeiro e o terceiro eco foi possível calcular o decaimento de sinal devido a efeitos relacionados com o decaimento T2*. O método para gerar o pseudo-CT baseia- se num modelo de regressão duplo entre as variáveis relacionadas com MRI e CT. Assim, o primeiro modelo aplica-se aos tecidos moles, enquanto que o segundo modelo se aplica aos tecidos ósseos. A segmentação entre estes tecidos foi realizada através da delineação manual dos tecidos ósseos. No caso do modelo de regressão para os tecidos moles, o modelo consiste numa regressão polinomial entre as imagens da fracção de gordura e os valores de CT. A ordem do polinómio usada foi obtida pela minimização do erro absoluto médio. No caso do modelo de regressão para os tecidos ósseos, um modelo de regressão de mistura gaussiana foi aplicado usando as imagens de gordura, água, de fracção de gordura e de R2*. Estas variáveis foram selecionadas, uma vez que estudos prévios correlacionam esta com a densidade mineral óssea, que por sua vez está relacionada com as intensidades em CT. A influência de incluir no modelo de regressão informação acerca da vizinhança foi estudada através da inclusão de imagens do desvio padrão nos 27 voxéis na vizinhança das variáveis previamente incluídas no modelo. O número de componentes a usar no modelo de regressão de mistura gaussiana foi obtido através da minimização do critério de Akaike. O pseudo-CT final foi obtido pela sobreposição das imagens obtidas através do duplo modelo de regressão, seguido da aplicação de um filtro gaussiano com desvio padrão de 0.5 de forma a mitigar os erros na segmentação dos tecidos ósseos. Este método foi validado usando imagens da zona pélvica de 6 pacientes usando um procedimento leave-one-out-cross-validation (LOOCV). Durante este procedimento, o modelo foi estimado através das variáveis de 5 pacientes (imagens de treino) e aplicado às variáveis relacionadas com MRI do paciente restante (imagem de validação), de forma a gerar o pseudo-CT. Este procedimento foi repetido para todas as seis combinações de imagens de treino e de validação e os pseudo-CT obtidos foram comparados com a imagem TC correspondente. No caso do modelo para os tecidos moles, verificou-se que a utilização de um polinómio de segundo grau permitia a obtenção de melhores resultados. Da mesma forma, verificou-se que a inclusão de informação acerca da vizinhança permitia uma melhor estimativa dos valores de pseudo-CT no caso dos tecidos ósseos. A segmentação dos tecidos ósseos foi considerada adequada uma vez que o valor médio do coeficiente de Dice entre estes tecidos e o osso em CT foi de 0.91 ±0.02. O valor médio do erro absoluto entre o pseudo-CT e a correspondente CT para todos os pacientes foi de 37.76±3.11 HU, enquanto que no caso dos tecidos ósseos o valor foi de 96.61±10.49 HU. Um erro médio de -2.68 ± 6.32 HU foi obtido, denotando a presença de bias no processo. Por outro lado, valores médios de peak-to-signal-noise-ratio (PSNR) e strucutre similarity índex (SSIM) de 23.92±1.62 dB e 0.91±0.01 foram obtidos, respectivamente. Os maiores erros foram encontrados no recto, uma vez que o ar não foi considerado neste método, nas interfaces entre diferentes tecidos, devido a erros no alinhamento das imagens, e nos tecidos ósseos. Desta forma, o método de obtenção de um pseudo-CT proposto nesta dissertação demonstrou ter potencial para permitir uma correcta estimativa da intensidade em CT. Os resultados obtidos demonstram uma melhoria significativa quando comparados com outros métodos encontrados na literatura que se baseiam num método relacionado com a intensidade, enquanto que se encontram na mesma ordem de magnitude de métodos baseados na anatomia do paciente. Para além disso, quando comparados com os primeiros, este método tem a vantagem de apenas uma sequência MRI ser utilizada, levando a uma redução no tempo de aquisição e nos custos associados. Por outro lado, a principal limitação deste método prende-se com a segmentação manual dos tecidos ósseos, o que dificulta a sua implementação clínica. Desta forma, o desenvolvimento de técnicas de segmentação automáticas dos tecidos ósseos torna-se necessária, sendo exemplos destas técnicas a criação de um shape model ou através da segmentação baseada num atlas. A combinação destes métodos com o método descrito nesta dissertação pode permitir a obtenção de uma alternativa às imagens de CT para o cálculo das doses em radioterapia e correcção de atenuação em PET-MRI.Purpose: Methods for deriving computed tomography (CT) equivalent information from MRI are needed for attenuation correction in PET-MRI applications, as well as for dose planning in MRI based radiation therapy workflows, due to the lack of correlation between the MR signal and the electron density of different tissues. This dissertation presents a method to generate a pseudo-CT from MR images acquired with a conventional MR pulse sequence. Methods: A T1-weighted Fast Field Echo sequence with 3 echo times was used. A 3-point water-fat decomposition algorithm was applied to the original MR images to obtain water and fat-only images as well as a quantitative fat fraction image. A R2* image was calculated using a mono-exponential fit between the first and third echo of the original MR images. The method for generating the pseudo-CT includes a dual-model regression between the MR features and a matched CT image. The first model was applied to soft tissues, while the second-model was applied to the bone anatomy that were previously segmented. The soft-tissue regression model consists of a second-order polynomial regression between the fat fraction values in soft tissue and the HU values in the CT image, while the bone regression model consists of a Gaussian mixture regression including the water, fat, fat fraction and R2* values in bone tissues. Neighbourhood information was also included in the bone regression model by calculating an image of the standard deviation of 27-neighbourhood of each voxel in each MR related feature. The final pseudo-CT was generated by combining the pseudo-CTs from both models followed by the application of a Gaussian filter for additional smoothing. This method was validated using datasets covering the pelvic area of six patients and applying a leave-one-out-cross-validation (LOOCV) procedure. During LOOCV, the model was estimated from the MR related features and the CT data of 5 patients (training set) and applied to the MR features of the remaining patient (validation set) to generate a pseudo-CT image. This procedure was repeated for the all six training and validation data combinations and the pseudo-CTs were compared to the corresponding CT image. Results: The average mean absolute error for the HU values in the body for all patients was 37.76±3.11 HU, while the average mean absolute error in the bone anatomy was 96.61±10.49 HU. No large differences in method accuracy were noted for the different patients, except for the air in the rectum which was classified as soft tissue. The largest errors were found in the rectum and in the interfaces between different tissue types. Conclusions: The pseudo-CT generation method here proposed has the potential to provide an accurate estimation of HU values. The results here reported are substantially better than other voxel-based methods proposed. However, they are in the same range as the results presented in anatomy-based methods. Further investigation in automatic MRI bone segmentation methods is necessary to allow the automatic application of this method into clinical practice. The combination of these automatic bone segmentation methods with the model here reported is expected to provide an alternative to CT images for dose planning in radiotherapy and attenuation correction in PET-MRI

    A New Generation of Mixture-Model Cluster Analysis with Information Complexity and the Genetic EM Algorithm

    Get PDF
    In this dissertation, we extend several relatively new developments in statistical model selection and data mining in order to improve one of the workhorse statistical tools - mixture modeling (Pearson, 1894). The traditional mixture model assumes data comes from several populations of Gaussian distributions. Thus, what remains is to determine how many distributions, their population parameters, and the mixing proportions. However, real data often do not fit the restrictions of normality very well. It is likely that data from a single population exhibiting either asymmetrical or nonnormal tail behavior could be erroneously modeled as two populations, resulting in suboptimal decisions. To avoid these pitfalls, we develop the mixture model under a broader distributional assumption by fitting a group of multivariate elliptically-contoured distributions (Anderson and Fang, 1990; Fang et al., 1990). Special cases include the multivariate Gaussian and power exponential distributions, as well as the multivariate generalization of the Student’s T. This gives us the flexibility to model nonnormal tail and peak behavior, though the symmetry restriction still exists. The literature has many examples of research generalizing the Gaussian mixture model to other distributions (Farrell and Mersereau, 2004; Hasselblad, 1966; John, 1970a), but our effort is more general. Further, we generalize the mixture model to be non-parametric, by developing two types of kernel mixture model. First, we generalize the mixture model to use the truly multivariate kernel density estimators (Wand and Jones, 1995). Additionally, we develop the power exponential product kernel mixture model, which allows the density to adjust to the shape of each dimension independently. Because kernel density estimators enforce no functional form, both of these methods can adapt to nonnormal asymmetric, kurtotic, and tail characteristics. Over the past two decades or so, evolutionary algorithms have grown in popularity, as they have provided encouraging results in a variety of optimization problems. Several authors have applied the genetic algorithm - a subset of evolutionary algorithms - to mixture modeling, including Bhuyan et al. (1991), Krishna and Murty (1999), and Wicker (2006). These procedures have the benefit that they bypass computational issues that plague the traditional methods. We extend these initialization and optimization methods by combining them with our updated mixture models. Additionally, we “borrow” results from robust estimation theory (Ledoit and Wolf, 2003; Shurygin, 1983; Thomaz, 2004) in order to data-adaptively regularize population covariance matrices. Numerical instability of the covariance matrix can be a significant problem for mixture modeling, since estimation is typically done on a relatively small subset of the observations. We likewise extend various information criteria (Akaike, 1973; Bozdogan, 1994b; Schwarz, 1978) to the elliptically-contoured and kernel mixture models. Information criteria guide model selection and estimation based on various approximations to the Kullback-Liebler divergence. Following Bozdogan (1994a), we use these tools to sequentially select the best mixture model, select the best subset of variables, and detect influential observations - all without making any subjective decisions. Over the course of this research, we developed a full-featured Matlab toolbox (M3) which implements all the new developments in mixture modeling presented in this dissertation. We show results on both simulated and real world datasets. Keywords: mixture modeling, nonparametric estimation, subset selection, influence detection, evidence-based medical diagnostics, unsupervised classification, robust estimation

    Modelling Locally Changing Variance Structured Time Series Data By Using Breakpoints Bootstrap Filtering

    Get PDF
    Stochastic processes have applications in many areas such as oceanography and engineering. Special classes of such processes deal with time series of sparse data. Studies in such cases focus in the analysis, construction and prediction in parametric models. Here, we assume several non-linear time series with additive noise components, and the model fitting is proposed in two stages. The first stage identifies the density using all the clusters information, without specifying any prior knowledge of the underlying distribution function of the time series. The effect of covariates is controlled by fitting the linear regression model with serially correlated errors. In the second stage, we partition the time series into consecutive non-overlapping intervals of quasi stationary increments where the coefficients shift from one stable regression relationship to a different one using a breakpoints detection algorithm. These breakpoints are estimated by minimizing the likelihood from the residuals. We approach time series prediction through the mixture distribution of combined error components. Parameter estimation of mixture distribution is done by using the EM algorithm. We apply the method to fish otolith data influenced by various environmental conditions and get estimation of parameters for the model

    Imfit: A Fast, Flexible New Program for Astronomical Image Fitting

    Full text link
    I describe a new, open-source astronomical image-fitting program called Imfit, specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. A key characteristic of the program is an object-oriented design which allows new types of image components (2D surface-brightness functions) to be easily written and added to the program. Image functions provided with Imfit include the usual suspects for galaxy decompositions (Sersic, exponential, Gaussian), along with Core-Sersic and broken-exponential profiles, elliptical rings, and three components which perform line-of-sight integration through 3D luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard chi^2 statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or Poisson-based maximum-likelihood statistics; the latter approach is particularly appropriate for cases of Poisson data in the low-count regime. I show that fitting low-S/N galaxy images using chi^2 minimization and individual-pixel Gaussian uncertainties can lead to significant biases in fitted parameter values, which are avoided if a Poisson-based statistic is used; this is true even when Gaussian read noise is present.Comment: pdflatex, 27 pages, 19 figures. Revised version, accepted by ApJ. Programs, source code, and documentation available at: http://www.mpe.mpg.de/~erwin/code/imfit
    corecore