5 research outputs found

    A bandwidth theorem for approximate decompositions

    Get PDF
    We provide a degree condition on a regular nn-vertex graph GG which ensures the existence of a near optimal packing of any family H\mathcal H of bounded degree nn-vertex kk-chromatic separable graphs into GG. In general, this degree condition is best possible. Here a graph is separable if it has a sublinear separator whose removal results in a set of components of sublinear size. Equivalently, the separability condition can be replaced by that of having small bandwidth. Thus our result can be viewed as a version of the bandwidth theorem of B\"ottcher, Schacht and Taraz in the setting of approximate decompositions. More precisely, let δk\delta_k be the infimum over all δ≥1/2\delta\ge 1/2 ensuring an approximate KkK_k-decomposition of any sufficiently large regular nn-vertex graph GG of degree at least δn\delta n. Now suppose that GG is an nn-vertex graph which is close to rr-regular for some r≥(δk+o(1))nr \ge (\delta_k+o(1))n and suppose that H1,…,HtH_1,\dots,H_t is a sequence of bounded degree nn-vertex kk-chromatic separable graphs with ∑ie(Hi)≤(1−o(1))e(G)\sum_i e(H_i) \le (1-o(1))e(G). We show that there is an edge-disjoint packing of H1,…,HtH_1,\dots,H_t into GG. If the HiH_i are bipartite, then r≥(1/2+o(1))nr\geq (1/2+o(1))n is sufficient. In particular, this yields an approximate version of the tree packing conjecture in the setting of regular host graphs GG of high degree. Similarly, our result implies approximate versions of the Oberwolfach problem, the Alspach problem and the existence of resolvable designs in the setting of regular host graphs of high degree.Comment: Final version, to appear in the Proceedings of the London Mathematical Societ

    Packing and embedding large subgraphs

    Get PDF
    This thesis contains several embedding results for graphs in both random and non random settings. Most notably, we resolve a long standing conjecture that the threshold probability for Hamiltonicity in the random binomial subgraph of the hypercube equals 1/21/2. %posed e.g.~by Bollob\'as, In Chapter 2 we obtain the following perturbation result regarding the hypercube \cQ^n: if H\subseteq\cQ^n satisfies δ(H)≥αn\delta(H)\geq\alpha n with α>0\alpha>0 fixed and we consider a random binomial subgraph \cQ^n_p of \cQ^n with p∈(0,1]p\in(0,1] fixed, then with high probability H\cup\cQ^n_p contains kk edge-disjoint Hamilton cycles, for any fixed k∈Nk\in\mathbb{N}. This result is part of a larger volume of work where we also prove the corresponding hitting time result for Hamiltonicity. In Chapter 3 we move to a non random setting. %to a deterministic one. %Instead of embedding a single Hamilton cycle our result concerns packing more general families of graphs into a fixed host graph. Rather than pack a small number of Hamilton cycles into a fixed host graph, our aim is to achieve optimally sized packings of more general families of graphs. More specifically, we provide a degree condition on a regular nn-vertex graph GG which ensures the existence of a near optimal packing of any family H\mathcal H of bounded degree nn-vertex kk-chromatic separable graphs into GG. %In general, this degree condition is best possible. %In particular, this yields an approximate version of the tree packing conjecture %in the setting of regular host graphs GG of high degree. %Similarly, our result implies approximate versions of the Oberwolfach problem, %the Alspach problem and the existence of resolvable designs in the setting of %regular host graphs of high degree. In particular, this yields approximate versions of the the tree packing conjecture, the Oberwolfach problem, the Alspach problem and the existence of resolvable designs in the setting of regular host graphs of high degree

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum
    corecore