94 research outputs found

    EnViSoRS: Enhanced Vision System for Robotic Surgery. A User-Defined Safety Volume Tracking to Minimize the Risk of Intraoperative Bleeding

    Get PDF
    open6siIn abdominal surgery, intra-operative bleeding is one of the major complications that affect the outcome of minimally invasive surgical procedures. One of the causes is attributed to accidental damages to arteries or veins, and one of the possible risk factors falls on the surgeon's skills. This paper presents the development and application of an Enhanced Vision System for Robotic Surgery (EnViSoRS), based on a user-defined Safety Volume (SV) tracking to minimise the risk of intra-operative bleeding. It aims at enhancing the surgeon's capabilities by providing Augmented Reality (AR) assistance towards the protection of vessels from injury during the execution of surgical procedures with a robot. The core of the framework consists in: (i) a hybrid tracking algorithm (LT-SAT tracker) that robustly follows a user-defined Safety Area (SA) in long term; (ii) a dense soft tissue 3D reconstruction algorithm, necessary for the computation of the SV; (iii) AR features for visualisation of the SV to be protected and of a graphical gauge indicating the current distance between the instruments and the reconstructed surface. EnViSoRS was integrated with a commercial robotic surgery system (the dVRK system) for testing and validation. The experiments aimed at demonstrating the accuracy, robustness, performance and usability of EnViSoRS during the execution of a simulated surgical task on a liver phantom. Results show an overall accuracy in accordance with surgical requirements (< 5mm), and high robustness in the computation of the SV in terms of precision and recall of its identification. The optimisation strategy implemented to speed up the computational time is also described and evaluated, providing AR features update rate up to 4 fps without impacting the real-time visualisation of the stereo endoscopic video. Finally, qualitative results regarding the system usability indicate that the proposed system integrates well with the commercial surgical robot and has indeed potential to offer useful assistance during real surgeries.openPenza, Veronica; De Momi, Elena; Enayati, Nima; Chupin, Thibaud; Ortiz, Jesús; Mattos, Leonardo S.Penza, Veronica; DE MOMI, Elena; Enayati, Nima; Chupin, THIBAUD JEAN EUDES; Ortiz, Jesús; Mattos, Leonardo S

    EndoAbS dataset: Endoscopic abdominal stereo image dataset for benchmarking 3D stereo reconstruction algorithms

    Get PDF
    Background: 3D reconstruction algorithms are of fundamental importance for augmented reality applications in computer-assisted surgery. However, few datasets of endoscopic stereo images with associated 3D surface references are currently openly available, preventing the proper validation of such algorithms. This work presents a new and rich dataset of endoscopic stereo images (EndoAbS dataset). Methods: The dataset includes (i) endoscopic stereo images of phantom abdominal organs, (ii) a 3D organ surface reference (RF) generated with a laser scanner and (iii) camera calibration parameters. A detailed description of the generation of the phantom and the camera–laser calibration method is also provided. Results: An estimation of the overall error in creation of the dataset is reported (camera–laser calibration error 0.43 mm) and the performance of a 3D reconstruction algorithm is evaluated using EndoAbS, resulting in an accuracy error in accordance with state-of-the-art results (<2 mm). Conclusions: The EndoAbS dataset contributes to an increase the number and variety of openly available datasets of surgical stereo images, including a highly accurate RF and different surgical conditions

    Long Term Safety Area Tracking (LT-SAT) with online failure detection and recovery for robotic minimally invasive surgery

    Get PDF
    partially_open6Despite the benefits introduced by robotic systems in abdominal Minimally Invasive Surgery (MIS), major complications can still affect the outcome of the procedure, such as intra-operative bleeding. One of the causes is attributed to accidental damages to arteries or veins by the surgical tools, and some of the possible risk factors are related to the lack of sub-surface visibilty. Assistive tools guiding the surgical gestures to prevent these kind of injuries would represent a relevant step towards safer clinical procedures. However, it is still challenging to develop computer vision systems able to fulfill the main requirements: (i) long term robustness, (ii) adaptation to environment/object variation and (iii) real time processing. The purpose of this paper is to develop computer vision algorithms to robustly track soft tissue areas (Safety Area, SA), defined intra-operatively by the surgeon based on the real-time endoscopic images, or registered from a pre-operative surgical plan. We propose a framework to combine an optical flow algorithm with a tracking-by-detection approach in order to be robust against failures caused by: (i) partial occlusion, (ii) total occlusion, (iii) SA out of the field of view, (iv) deformation, (v) illumination changes, (vi) abrupt camera motion, (vii), blur and (viii) smoke. A Bayesian inference-based approach is used to detect the failure of the tracker, based on online context information. A Model Update Strategy (MUpS) is also proposed to improve the SA re-detection after failures, taking into account the changes of appearance of the SA model due to contact with instruments or image noise. The performance of the algorithm was assessed on two datasets, representing ex-vivo organs and in-vivo surgical scenarios. Results show that the proposed framework, enhanced with MUpS, is capable of maintain high tracking performance for extended periods of time ( ≃ 4 min - containing the aforementioned events) with high precision (0.7) and recall (0.8) values, and with a recovery time after a failure between 1 and 8 frames in the worst case.openPenza, Veronica; Du, Xiaofei; Stoyanov, Danail; Forgione, Antonello; Mattos, Leonardo S; De Momi, ElenaPenza, Veronica; Du, Xiaofei; Stoyanov, DANAIL VALENTINOV; Forgione, Antonello; Mattos, Leonardo S; De Momi, Elen
    • …
    corecore