466 research outputs found

    Constructing Intrinsic Delaunay Triangulations of Submanifolds

    Get PDF
    We describe an algorithm to construct an intrinsic Delaunay triangulation of a smooth closed submanifold of Euclidean space. Using results established in a companion paper on the stability of Delaunay triangulations on δ\delta-generic point sets, we establish sampling criteria which ensure that the intrinsic Delaunay complex coincides with the restricted Delaunay complex and also with the recently introduced tangential Delaunay complex. The algorithm generates a point set that meets the required criteria while the tangential complex is being constructed. In this way the computation of geodesic distances is avoided, the runtime is only linearly dependent on the ambient dimension, and the Delaunay complexes are guaranteed to be triangulations of the manifold

    Practical Distance Functions for Path-Planning in Planar Domains

    Full text link
    Path planning is an important problem in robotics. One way to plan a path between two points x,yx,y within a (not necessarily simply-connected) planar domain Ω\Omega, is to define a non-negative distance function d(x,y)d(x,y) on Ω×Ω\Omega\times\Omega such that following the (descending) gradient of this distance function traces such a path. This presents two equally important challenges: A mathematical challenge -- to define dd such that d(x,y)d(x,y) has a single minimum for any fixed yy (and this is when x=yx=y), since a local minimum is in effect a "dead end", A computational challenge -- to define dd such that it may be computed efficiently. In this paper, given a description of Ω\Omega, we show how to assign coordinates to each point of Ω\Omega and define a family of distance functions between points using these coordinates, such that both the mathematical and the computational challenges are met. This is done using the concepts of \emph{harmonic measure} and \emph{ff-divergences}. In practice, path planning is done on a discrete network defined on a finite set of \emph{sites} sampled from Ω\Omega, so any method that works well on the continuous domain must be adapted so that it still works well on the discrete domain. Given a set of sites sampled from Ω\Omega, we show how to define a network connecting these sites such that a \emph{greedy routing} algorithm (which is the discrete equivalent of continuous gradient descent) based on the distance function mentioned above is guaranteed to generate a path in the network between any two such sites. In many cases, this network is close to a (desirable) planar graph, especially if the set of sites is dense

    Data visualization within urban models

    Get PDF
    Models of urban environments have many uses for town planning, pre-visualization of new building work and utility service planning. Many of these models are three-dimensional, and increasingly there is a move towards real-time presentation of such large models. In this paper we present an algorithm for generating consistent 3D models from a combination of data sources, including Ordnance Survey ground plans, aerial photography and laser height data. Although there have been several demonstrations of automatic generation of building models from 2D vector map data, in this paper we present a very robust solution that generates models that are suitable for real-time presentation. We then demonstrate a novel pollution visualization that uses these models
    • …
    corecore