201 research outputs found

    On packing spheres into containers (about Kepler's finite sphere packing problem)

    Full text link
    In an Euclidean dd-space, the container problem asks to pack nn equally sized spheres into a minimal dilate of a fixed container. If the container is a smooth convex body and d2d\geq 2 we show that solutions to the container problem can not have a ``simple structure'' for large nn. By this we in particular find that there exist arbitrary small r>0r>0, such that packings in a smooth, 3-dimensional convex body, with a maximum number of spheres of radius rr, are necessarily not hexagonal close packings. This contradicts Kepler's famous statement that the cubic or hexagonal close packing ``will be the tightest possible, so that in no other arrangement more spheres could be packed into the same container''.Comment: 13 pages, 2 figures; v2: major revision, extended result, simplified and clarified proo

    Circle packing in arbitrary domains

    Full text link
    We describe an algorithm that allows one to find dense packing configurations of a number of congruent disks in arbitrary domains in two or more dimensions. We have applied it to a large class of two dimensional domains such as rectangles, ellipses, crosses, multiply connected domains and even to the cardioid. For many of the cases that we have studied no previous result was available. The fundamental idea in our approach is the introduction of "image" disks, which allows one to work with a fixed container, thus lifting the limitations of the packing algorithms of \cite{Nurmela97,Amore21,Amore23}. We believe that the extension of our algorithm to three (or higher) dimensional containers (not considered here) can be done straightforwardly.Comment: 26 pages, 17 figure

    Dense Packings of Congruent Circles in Rectangles with a Variable Aspect Ratio

    Full text link
    We use computational experiments to find the rectangles of minimum area into which a given number n of non-overlapping congruent circles can be packed. No assumption is made on the shape of the rectangles. Most of the packings found have the usual regular square or hexagonal pattern. However, for 1495 values of n in the tested range n =< 5000, specifically, for n = 49, 61, 79, 97, 107,... 4999, we prove that the optimum cannot possibly be achieved by such regular arrangements. The evidence suggests that the limiting height-to-width ratio of rectangles containing an optimal hexagonal packing of circles tends to 2-sqrt(3) as n tends to infinity, if the limit exists.Comment: 21 pages, 13 figure

    The Construction of Conforming-to-shape Truss Lattice Structures via 3D Sphere Packing

    Get PDF
    Truss lattices are common in a wide variety of engineering applications, due to their high ratio of strength versus relative density. They are used both as the interior support for other structures, and as structures on their own. Using 3D sphere packing, we propose a set of methods for generating truss lattices that fill the interior of B-rep models, polygonal or (trimmed) NURBS based, of arbitrary shape. Once the packing of the spheres has been established, beams between the centers of adjacent spheres are constructed, as spline based B-rep geometry. We also demonstrate additional capabilities of our methods, including connecting the truss lattice to (a shell of) the B-rep model, as well as constructing a tensor-product trivariate volumetric representation of the truss lattice - an important step towards direct compatibility for analysis.RYC-2017-2264

    Balanced Circular Packing Problems with Distance Constraints

    Get PDF
    The packing of different circles in a circular container under balancing and distance conditions is considered. Two problems are studied: the first minimizes the container’s radius, while the second maximizes the minimal distance between circles, as well as between circles and the boundary of the container. Mathematical models and solution strategies are provided and illustrated with computational results

    Decomposing and packing polygons / Dania el-Khechen.

    Get PDF
    In this thesis, we study three different problems in the field of computational geometry: the partitioning of a simple polygon into two congruent components, the partitioning of squares and rectangles into equal area components while minimizing the perimeter of the cuts, and the packing of the maximum number of squares in an orthogonal polygon. To solve the first problem, we present three polynomial time algorithms which given a simple polygon P partitions it, if possible, into two congruent and possibly nonsimple components P 1 and P 2 : an O ( n 2 log n ) time algorithm for properly congruent components and an O ( n 3 ) time algorithm for mirror congruent components. In our analysis of the second problem, we experimentally find new bounds on the optimal partitions of squares and rectangles into equal area components. The visualization of the best determined solutions allows us to conjecture some characteristics of a class of optimal solutions. Finally, for the third problem, we present three linear time algorithms for packing the maximum number of unit squares in three subclasses of orthogonal polygons: the staircase polygons, the pyramids and Manhattan skyline polygons. We also study a special case of the problem where the given orthogonal polygon has vertices with integer coordinates and the squares to pack are (2 {604} 2) squares. We model the latter problem with a binary integer program and we develop a system that produces and visualizes optimal solutions. The observation of such solutions aided us in proving some characteristics of a class of optimal solutions
    corecore