1,546 research outputs found

    Dense monocular reconstruction using surface normals

    Get PDF
    This paper presents an efficient framework for dense 3D scene reconstruction using input from a moving monocular camera. Visual SLAM (Simultaneous Localisation and Mapping) approaches based solely on geometric methods have proven to be quite capable of accurately tracking the pose of a moving camera and simultaneously building a map of the environment in real-time. However, most of them suffer from the 3D map being too sparse for practical use. The missing points in the generated map correspond mainly to areas lacking texture in the input images, and dense mapping systems often rely on hand-crafted priors like piecewise-planarity or piecewise-smooth depth. These priors do not always provide the required level of scene understanding to accurately fill the map. On the other hand, Convolutional Neural Networks (CNNs) have had great success in extracting high-level information from images and regressing pixel-wise surface normals, semantics, and even depth. In this work we leverage this high-level scene context learned by a deep CNN in the form of a surface normal prior. We show, in particular, that using the surface normal prior leads to better reconstructions than the weaker smoothness prior.Chamara Saroj Weerasekera, Yasir Latif, Ravi Garg, Ian Rei

    Tex2Shape: Detailed Full Human Body Geometry From a Single Image

    No full text
    We present a simple yet effective method to infer detailed full human body shape from only a single photograph. Our model can infer full-body shape including face, hair, and clothing including wrinkles at interactive frame-rates. Results feature details even on parts that are occluded in the input image. Our main idea is to turn shape regression into an aligned image-to-image translation problem. The input to our method is a partial texture map of the visible region obtained from off-the-shelf methods. From a partial texture, we estimate detailed normal and vector displacement maps, which can be applied to a low-resolution smooth body model to add detail and clothing. Despite being trained purely with synthetic data, our model generalizes well to real-world photographs. Numerous results demonstrate the versatility and robustness of our method

    Tex2Shape: Detailed Full Human Body Geometry From a Single Image

    Get PDF
    We present a simple yet effective method to infer detailed full human body shape from only a single photograph. Our model can infer full-body shape including face, hair, and clothing including wrinkles at interactive frame-rates. Results feature details even on parts that are occluded in the input image. Our main idea is to turn shape regression into an aligned image-to-image translation problem. The input to our method is a partial texture map of the visible region obtained from off-the-shelf methods. From a partial texture, we estimate detailed normal and vector displacement maps, which can be applied to a low-resolution smooth body model to add detail and clothing. Despite being trained purely with synthetic data, our model generalizes well to real-world photographs. Numerous results demonstrate the versatility and robustness of our method
    • …
    corecore