287 research outputs found

    Spatiotemporal subpixel mapping of time-series images

    Get PDF
    Land cover/land use (LCLU) information extraction from multitemporal sequences of remote sensing imagery is becoming increasingly important. Mixed pixels are a common problem in Landsat and MODIS images that are used widely for LCLU monitoring. Recently developed subpixel mapping (SPM) techniques can extract LCLU information at the subpixel level by dividing mixed pixels into subpixels to which hard classes are then allocated. However, SPM has rarely been studied for time-series images (TSIs). In this paper, a spatiotemporal SPM approach was proposed for SPM of TSIs. In contrast to conventional spatial dependence-based SPM methods, the proposed approach considers simultaneously spatial and temporal dependences, with the former considering the correlation of subpixel classes within each image and the latter considering the correlation of subpixel classes between images in a temporal sequence. The proposed approach was developed assuming the availability of one fine spatial resolution map which exists among the TSIs. The SPM of TSIs is formulated as a constrained optimization problem. Under the coherence constraint imposed by the coarse LCLU proportions, the objective is to maximize the spatiotemporal dependence, which is defined by blending both spatial and temporal dependences. Experiments on three data sets showed that the proposed approach can provide more accurate subpixel resolution TSIs than conventional SPM methods. The SPM results obtained from the TSIs provide an excellent opportunity for LCLU dynamic monitoring and change detection at a finer spatial resolution than the available coarse spatial resolution TSIs

    Benthic mapping of the Bluefields Bay fish sanctuary, Jamaica

    Get PDF
    Small island states, such as those in the Caribbean, are dependent on the nearshore marine ecosystem complex and its resources; the goods and services provided by seagrass and coral reef for example, are particularly indispensable to the tourism and fishing industries. In recognition of their valuable contributions and in an effort to promote sustainable use of marine resources, some nearshore areas have been designated as fish sanctuaries, as well as marine parks and protected areas. In order to effectively manage these coastal zones, a spatial basis is vital to understanding the ecological dynamics and ultimately inform management practices. However, the current extent of habitats within designated sanctuaries across Jamaica are currently unknown and owing to this, the Government of Jamaica is desirous of mapping the benthic features in these areas. Given the several habitat mapping methodologies that exist, it was deemed necessary to test the practicality of applying two remote sensing methods - optical and acoustic - at a pilot site in western Jamaica, the Bluefields Bay fish sanctuary. The optical remote sensing method involved a pixel-based supervised classification of two available multispectral images (WorldView-2 and GeoEye-1), whilst the acoustic method comprised a sonar survey using a BioSonics DT-X Portable Echosounder and subsequent indicator kriging interpolation in order to create continuous benthic surfaces. Image classification resulted in the mapping of three benthic classes, namely submerged vegetation, bare substrate and coral reef, with an overall map accuracy of 89.9% for WorldView-2 and 86.8% for GeoEye-1 imagery. These accuracies surpassed those of the acoustic classification method, which attained 76.6% accuracy for vegetation presence, and 53.5% for bottom substrate (silt, sand and coral reef/ hard bottom). Both approaches confirmed that the Bluefields Bay is dominated by submerged aquatic vegetation, with contrastingly smaller areas of bare sediment and coral reef patches. Additionally, the sonar revealed that silty substrate exists along the shoreline, whilst sand is found further offshore. Ultimately, the methods employed in this study were compared and although it was found that satellite image classification was perhaps the most cost-effective and well-suited for Jamaica given current available equipment and expertise, it is acknowledged that acoustic technology offers greater thematic detail required by a number of stakeholders and is capable of operating in turbid waters and cloud covered environments ill-suited for image classification. On the contrary, a major consideration for the acoustic classification process is the interpolation of processed data; this step gives rise to a number of potential limitations, such as those associated with the choice of interpolation algorithm, available software and expertise. The choice in mapping approach, as well as the survey design and processing steps is not an easy task; however the results of this study highlight the various benefits and shortcomings of implementing optical and acoustic classification approaches in Jamaica.Persons automatically associate tropical waters with spectacular views of coral reefs and colourful fish; however many are perhaps not aware that these coral reefs, as well as other living organisms inhabiting the seabed are in fact extremely valuable to our existence. Healthy coral reefs and seagrass assist in maintaining the sand on our beaches and fish populations and are thereby crucial to the tourism and fishing industries in the Caribbean. For this reason, a number of areas are protected by law and have been designated fish sanctuaries or marine protected areas. In order to understand the functioning of theses areas and effectively inform management strategy, the configuration of what exists on the seafloor is crucial. In the same vein that a motorist needs a road map to navigate unknown areas, coastal stakeholders require maps of the seafloor in order to understand what is happening beneath the water’s surface. The location of seafloor habitats within fish sanctuaries in Jamaica are currently unknown and the Government is interested in mapping them. However a myriad of methods exist that could be employed to achieve this goal. Remote sensing is a broad grouping of methods that involve collecting information about an object without being in direct physical contact with it. Many researchers have successfully mapped marine areas using these techniques and it was believed crucial to test the practicality of two such methods, specifically optical and acoustic remote sensing. The main question to be answered from this study was therefore: Which mapping approach is better for benthic habitat mapping in Jamaica and possibly the wider Caribbean? Optical remote sensing relates to the interaction of energy with the Earth’s surface. A digital photograph is taken from a satellite and subsequently interpreted. Acoustic/ sonar technology involves the recording of waveforms reflected from the seabed. Both methods were employed at a pilot site, the Bluefields Bay fish sanctuary, situated in western Jamaica. The optical remote sensing method involved the classification of two satellite images (named WorldView-2 and GeoEye-1) and this process was informed using known positions of seafloor features, this being known as supervised image classification. With regard to the acoustic method, a field survey utilising sonar equipment (BioSonics DT-X Portable Echosounder) was undertaken in order to collect the necessary sonar data. The processed field data was modelled in order to convert lines of field point data to one continuous map of the sanctuary, a process known as interpolation. The accuracy of each method was then tested using field knowledge of what exists in the sanctuary. The map resulting from the image classification revealed three seafloor types, namely submerged vegetation, coral reef and bare seafloor. The overall map accuracy was 89.9% for the WorldView-2 image and 86.8% for GeoEye-1 imagery. These accuracies surpassed those attained from the acoustic classification method (76.6% for vegetation presence and 53.5% for bottom type - silt, sand and coral reef/ hard bottom). Similar to previous studies undertaken, it was shown that the seabed of Bluefields Bay is primarily inhabited by submerged aquatic vegetation (including seagrass and algae), with contrastingly smaller areas of bare sediment and coral reef. Ultimately, the methods employed in this study were compared and the pros and cons of each were weighed in order to deem one method more suitable in Jamaica. Often, the presence of cloud and suspended matter in the water block the view of the seafloor making image classification difficult. On the contrary, acoustic surveys are capable of operating throughout cloudy conditions and attaining more detailed information of the ocean floor, otherwise not possible with optical remote sensing. A major step in the acoustic classification process however, was the interpolation of processed data, which may introduce additional limitations if careful consideration is not given to the intricacies of the process. Lastly, the acoustic survey certainly required greater financial resources than satellite image classification. In answer to the main question of this study, the most cost effective and feasible mapping method for Jamaica is satellite image classification (based on the results attained). It must be stressed however that the effective implementation of any method will depend on a number of factors, such as available software, equipment, expertise and user needs, that must be weighed in order to select the most feasible mapping method for a particular site

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references

    Deep convolutional regression modelling for forest parameter retrieval

    Get PDF
    Accurate forest monitoring is crucial as forests are major global carbon sinks. Additionally, accurate prediction of forest parameters, such as forest biomass and stem volume (SV), has economic importance. Therefore, the development of regression models for forest parameter retrieval is essential. Existing forest parameter estimation methods use regression models that establish pixel-wise relationships between ground reference data and corresponding pixels in remote sensing (RS) images. However, these models often overlook spatial contextual relationships among neighbouring pixels, limiting the potential for improved forest monitoring. The emergence of deep convolutional neural networks (CNNs) provides opportunities for enhanced forest parameter retrieval through their convolutional filters that allow for contextual modelling. However, utilising deep CNNs for regression presents its challenges. One significant challenge is that the training of CNNs typically requires continuous data layers for both predictor and response variables. While RS data is continuous, the ground reference data is sparse and scattered across large areas due to the challenges and costs associated with in situ data collection. This thesis tackles challenges related to using CNNs for regression by introducing novel deep learning-based solutions across diverse forest types and parameters. To address the sparsity of available reference data, RS-derived prediction maps can be used as auxiliary data to train the CNN-based regression models. This is addressed through two different approaches. Although these prediction maps offer greater spatial coverage than the original ground reference data, they do not ensure spatially continuous prediction target data. This work proposes a novel methodology that enables CNN-based regression models to handle this diversity. Efficient CNN architectures for the regression task are developed by investigating relevant learning objectives, including a new frequency-aware one. To enable large-scale and cost-effective regression modelling of forests, this thesis suggests utilising C-band synthetic aperture radar SAR data as regressor input. Results demonstrate the substantial potential of C-band SAR-based convolutional regression models for forest parameter retrieval

    A Critical Evaluation of Remote Sensing Based Land Cover Mapping Methodologies

    Get PDF
    A novel, disaggregated approach to land cover survey is developed on the basis of land cover attributes; the parameters typically used to delineate land cover classes. The recording of land cover attributes, via objective measurement techniques, is advocated as it eliminates the requirement for surveyors to delineate and classify land cover; a process proven to be subjective and error prone. Within the North York Moors National Park, a field methodology is developed to characterise five attributes: species composition, cover, height, structure and density. The utility of land cover attributes to act as land cover ‘building blocks’ is demonstrated via classification of the field data to the Monitoring Landscape Change in the National Parks (MLCNP), National Land Use Database (NLUD) and Phase 1 Habitat Mapping (P1) schemes. Integration of the classified field data and a SPOT5 satellite image is demonstrated within per-pixel and object-orientated classification environments. Per-pixel classification produced overall accuracies of 81%, 80% and 76% at the field samples for the MLCNP, NLUD and P1 schemes, respectively. However, independent validation produced significantly lower accuracies. These decreases are demonstrated to be a function of sample fraction. Object-orientated classification, exemplified for the MLCNP schema at 3 segmentation scales, achieved accuracies approaching 75%. The aggregation of attributes to classes underutilises the potential of the remotely sensed data to describe landscape variability. Consequently, classification and geostatistical techniques capable of land cover attribute parameterisation, across the study area, are reviewed and exemplified for a sub-pixel classification. Land cover attributes provide a flexible source of field data which has been proven to support multiple land cover classification schemes and classification scales (sub-pixel, pixel and object). This multi-scaled/schemed approach enables the differential treatment of regions, within the remote sensing image, as a function of landscape characteristics and the users’ requirements providing a flexible mapping solution

    High dimensional land cover inference using remotely sensed MODIS data

    Full text link
    Image segmentation persists as a major statistical problem, with the volume and complexity of data expanding alongside new technologies. Land cover classification, one of the most studied problems in Remote Sensing, provides an important example of image segmentation whose needs transcend the choice of a particular classification method. That is, the challenges associated with land cover classification pervade the analysis process from data pre-processing to estimation of a final land cover map. Many of the same challenges also plague the task of land cover change detection. Multispectral, multitemporal data with inherent spatial relationships have hardly received adequate treatment due to the large size of the data and the presence of missing values. In this work we propose a novel, concerted application of methods which provide a unified way to estimate model parameters, impute missing data, reduce dimensionality, classify land cover, and detect land cover changes. This comprehensive analysis adopts a Bayesian approach which incorporates prior knowledge to improve the interpretability, efficiency, and versatility of land cover classification and change detection. We explore a parsimonious, parametric model that allows for a natural application of principal components analysis to isolate important spectral characteristics while preserving temporal information. Moreover, it allows us to impute missing data and estimate parameters via expectation-maximization (EM). A significant byproduct of our framework includes a suite of training data assessment tools. To classify land cover, we employ a spanning tree approximation to a lattice Potts prior to incorporate spatial relationships in a judicious way and more efficiently access the posterior distribution of pixel labels. We then achieve exact inference of the labels via the centroid estimator. To detect land cover changes, we develop a new EM algorithm based on the same parametric model. We perform simulation studies to validate our models and methods, and conduct an extensive continental scale case study using MODIS data. The results show that we successfully classify land cover and recover the spatial patterns present in large scale data. Application of our change point method to an area in the Amazon successfully identifies the progression of deforestation through portions of the region
    corecore