633 research outputs found

    Using automated vegetation cover estimation from close-range photogrammetric point clouds to compare vegetation location properties in mountain terrain

    Get PDF
    In this paper we present a low-cost approach to mapping vegetation cover by means of high-resolution close-range terrestrial photogrammetry. A total of 249 clusters of nine 1 m2 plots each, arranged in a 3 × 3 grid, were set up on 18 summits in Mediterranean mountain regions and in the Alps to capture images for photogrammetric processing and in-situ vegetation cover estimates. This was done with a hand-held pole-mounted digital single-lens reflex (DSLR) camera. Low-growing vegetation was automatically segmented using high-resolution point clouds. For classifying vegetation we used a two-step semi-supervised Random Forest approach. First, we applied an expert-based rule set using the Excess Green index (ExG) to predefine non-vegetation and vegetation points. Second, we applied a Random Forest classifier to further enhance the classification of vegetation points using selected topographic parameters (elevation, slope, aspect, roughness, potential solar irradiation) and additional vegetation indices (Excess Green Minus Excess Red (ExGR) and the vegetation index VEG). For ground cover estimation the photogrammetric point clouds were meshed using Screened Poisson Reconstruction. The relative influence of the topographic parameters on the vegetation cover was determined with linear mixed-effects models (LMMs). Analysis of the LMMs revealed a high impact of elevation, aspect, solar irradiation, and standard deviation of slope. The presented approach goes beyond vegetation cover values based on conventional orthoimages and in-situ vegetation cover estimates from field surveys in that it is able to differentiate complete 3D surface areas, including overhangs, and can distinguish between vegetation-covered and other surfaces in an automated manner. The results of the Random Forest classification confirmed it as suitable for vegetation classification, but the relative feature importance values indicate that the classifier did not leverage the potential of the included topographic parameters. In contrast, our application of LMMs utilized the topographic parameters and was able to reveal dependencies in the two biomes, such as elevation and aspect, which were able to explain between 87% and 92.5% of variance

    Quantifying spatial uncertainties in structure from motion snow depth mapping with drones in an alpine environment

    Get PDF
    Due to the heterogeneous nature of alpine snow distribution, advances in hydrological monitoring and forecasting for water resource management require an increase in the frequency, spatial resolution and coverage of field observations. Such detailed snow information is also needed to foster advances in our understanding of how snowpack affects local ecology and geomorphology. Although recent use of structure-from-motion multi-view stereo (SFM-MVS) 3D reconstruction techniques combined with aerial image collection using drones has shown promising potential to provide higher spatial and temporal resolution snow depth data for snowpack monitoring, there still remain challenges to produce high-quality data with this approach. These challenges, which include differentiating observations from noise and overcoming biases in the elevation data, are inherent in digital elevation model (DEM) differencing. A key issue to address these challenges is our ability to quantify measurement uncertainties in the SFM-MVS snow depths which can vary in space and time. The purpose of this thesis was to develop data-driven approaches for spatially quantifying, characterizing and reducing uncertainties in SFM-MVS snow depth mapping in alpine areas. Overall, this thesis provides a general framework for performing a detailed analysis of the spatial pattern of SFM-MVS snow depth uncertainties, as well as provides an approach for correction of snow depth errors due to changes in the sub-snow topography occurring between survey acquisition dates. It also contributes to the growing support of SFM-MVS combined with imagery acquired from drones as a suitable surveying technique for local scale snow distribution monitoring in alpine areas

    Sensing Mountains

    Get PDF
    Sensing mountains by close-range and remote techniques is a challenging task. The 4th edition of the international Innsbruck Summer School of Alpine Research 2022 – Close-range Sensing Techniques in Alpine Terrain brings together early career and experienced scientists from technical-, geo- and environmental-related research fields. The interdisciplinary setting of the summer school creates a creative space for exchanging and learning new concepts and solutions for mapping, monitoring and quantifying mountain environments under ongoing conditions of change

    Landscape scale mapping of tundra vegetation structure at ultra-high resolution using UAVs and computer vision

    Get PDF
    Ilmastomuutoksella on voimakkain vaikutus suurten leveysasteiden ekosysteemeissĂ€, jotka ovat sopeutuneet viileÀÀn ilmastoon. Jotta suurella mittakaavalla havaittuja muutoksia tundrakasvillisuudessa ja niiden takaisinkytkentĂ€vaikutuksia ilmastoon voidaan ymmĂ€rtÀÀ ja ennustaa luotettavammin, on syytĂ€ tarkastella mitĂ€ tapahtuu pienellĂ€ mittakaavalla; jopa yksittĂ€isissĂ€ kasveissa. LĂ€hivuosikymmenten aikana tapahtunut teknologinen kehitys on mahdollistanut kustannustehokkaiden, kevyiden ja pienikokoisten miehittĂ€mĂ€ttömien ilma-alusten (UAV) yleistymisen. ErittĂ€in korkearesoluutioisten aineistojen (pikselikoko <10cm) lisÀÀntyessĂ€ ja tullessa yhĂ€ helpommin saataville, ympĂ€ristön tarkastelussa kĂ€ytetyt kaukokartoitusmenetelmĂ€t altistuvat paradigmanmuutokselle, kun konenĂ€köön ja -oppimiseen perustuvat algoritmit ja analyysit yleistyvĂ€t. Menetelmien kĂ€yttöönotto on houkuttelevaa, koska ne mahdollistavat joustavan ja pitkĂ€lle automatisoidun aineistonkeruun ja erittĂ€in tarkkojen kaukokartoitustuotteiden tuottamisen vaikeasti tavoitettavilta alueilta, kuten tundralla. Luotettavien tulosten saaminen vaatii kuitenkin huolellista suunnittelua sekĂ€ prosessointialgoritmien ja -parametrien pitkĂ€jĂ€nteistĂ€ testaamista. TĂ€ssĂ€ tutkimuksessa tarkasteltiin, kuinka tarkasti tavallisella digitaalikameralla kerĂ€tyistĂ€ ilmakuvista johdetuilla muuttujilla voidaan kartoittaa kasvillisuuden rakennetta maisemamittakaavalla. KilpisjĂ€rvellĂ€ Pohjois-Fennoskandiassa kerĂ€ttiin dronella kolmensadan hehtaarin kokoiselta alueelta yhteensĂ€ noin 10 000 ilmakuvasta koostuva aineisto. LisĂ€ksi alueella mÀÀritettiin 1183 pisteestĂ€ dominantti putkilokasvillisuus, sekĂ€ kasvillisuuden korkeus. Ilmakuvat prosessoitiin tiheiksi kolmiulotteisiksi pistepilviksi konenĂ€köön ja fotogrammetriaan perustuvalla SfM (Structure from Motion) menetelmĂ€llĂ€. Pistepilvien pohjalta interpoloitiin maastomalli sekĂ€ kasvillisuuden korkeusmalli. LisĂ€ksi tuotettiin koko alueen kattava ilmakuvamosaiikki. NĂ€iden aineistojen pohjalta laskettiin muuttujia, joita kĂ€ytettiin yhdessĂ€ maastoreferenssiaineiston kanssa kasvillisuuden objektipohjaisessa analyysissĂ€ (GEOBIA, Geographical Object-Based Image Analysis). Suodatetut maanpintapisteet vastasivat luotettavasti todellista maanpinnan korkeutta koko alueella ja tuotetut korkeusmallit korreloivat voimakkaasti maastoreferenssiaineiston kanssa. Maastomallin virhe oli suurin alueilla, joilla oli korkeaa kasvillisuutta. Valaistusolosuhteissa ja kasvillisuudessa tapahtuneet muutokset ilmakuvien keruun aikana aiheuttivat haasteita objektipohjaisen analyysin molemmissa vaiheissa: segmentoinnissa ja luokittelussa. mutta kokonaistarkkuus parani 0,27:stĂ€ 0,,54:n kun luokitteluun lisĂ€ttiin topografiaa, kasvillisuuden korkeutta ja tekstuuria kuvaavia muuttujia ja kohdeluokkien lukumÀÀrÀÀ vĂ€hennettiin. KonenĂ€köön ja –oppimiseen perustuvat menetelmĂ€t pystyvĂ€t tuottamaan tĂ€rkeÀÀ tietoa tundran kasvillisuuden rakenteesta, erityisesti kasvillisuuden korkeudesta, maisemassa. LisÀÀ tutkimusta kuitenkin tarvitaan parhaiden algoritmien ja parametrien mÀÀrittĂ€miseksi tundraympĂ€ristössĂ€, jossa ympĂ€ristöolosuhteet muuttuvat nopeasti ja kasvillisuus on heterogeenistĂ€ ja sekoittunutta, mikĂ€ aiheuttaa eroja ilmakuvien vĂ€lillĂ€ ja lisÀÀ vaikeuksia analyyseissĂ€.Climate change has the strongest impact on high-latitude ecosystems that are adapted to cool climates. In order to better understand and predict the changes in tundra vegetation observed on large scales as well as their feedbacks onto climate, it is necessary to look at what is happening at finer scales; even in individual plants. Technological developments over the past few decades have enabled the spread of cost-effective, light and small unmanned aerial vehicles (UAVs). As very high-resolution data (pixel size <10cm) becomes more and more available, the remote sensing methods used in environmental analysis become subject to a paradigm shift as algorithms and analyzes based on machine vision and learning turn out to be more common. Harnessing new methods is attractive because they allow flexible and highly automated data collection and the production of highly accurate remote sensing products from hard-to-reach areas such as the tundra. However, obtaining reliable results requires careful planning and testing of processing algorithms and parameters. This study looked at how accurately variables derived from aerial images collected with an off-the-shelf digital camera can map the vegetation structure on a landscape scale. In KilpisjĂ€rvi, northern Fennoscandia, a total of ~ 10,000 aerial photographs were collected by drone covering an area of three hundred hectares. In addition, dominant vascular plants were identified from 1183 points in the area, as well as vegetation height. Aerial images were processed into dense three-dimensional point clouds by using SfM (Structure from Motion) method, which is based on computer vision and digital photogrammetry. From the point clouds terrain models and vegetation height models were interpolated. In addition, image mosaic covering the entire area was produced. Based on these data, predictive variables were calculated, which were used together with the terrain reference data in Geographical Object-Based Image Analysis (GEOBIA). The filtered ground points corresponded to observations throughout the region, and the produced elevation models strongly correlated with the ground reference data. The terrain model error was greatest in areas with tall vegetation. Changes in lighting conditions and vegetation during aerial image surveys posed challenges in both phases of object-based analysis: segmentation and classification. but overall accuracy improved from 0.27 to 0.54 when topography, vegetation height and texture variables were added to the classifier and the number of target classes was reduced. Methods based on machine vision and learning can produce important information about vegetation structure, vegetation height, in a landscape. However, more research is needed to determine the best algorithms and parameters in a tundra environment where environmental conditions change rapidly and vegetation is heterogeneous and mixed, causing differences between aerial images and difficulties in analyses

    Generation of a Land Cover Atlas of environmental critic zones using unconventional tools

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application

    VGC 2023 - Unveiling the dynamic Earth with digital methods: 5th Virtual Geoscience Conference: Book of Abstracts

    Get PDF
    Conference proceedings of the 5th Virtual Geoscience Conference, 21-22 September 2023, held in Dresden. The VGC is a multidisciplinary forum for researchers in geoscience, geomatics and related disciplines to share their latest developments and applications.:Short Courses 9 Workshops Stream 1 10 Workshop Stream 2 11 Workshop Stream 3 12 Session 1 – Point Cloud Processing: Workflows, Geometry & Semantics 14 Session 2 – Visualisation, communication & Teaching 27 Session 3 – Applying Machine Learning in Geosciences 36 Session 4 – Digital Outcrop Characterisation & Analysis 49 Session 5 – Airborne & Remote Mapping 58 Session 6 – Recent Developments in Geomorphic Process and Hazard Monitoring 69 Session 7 – Applications in Hydrology & Ecology 82 Poster Contributions 9
    • 

    corecore