269 research outputs found

    Dense Semi-Rigid Scene Flow Estimation from RGBD images

    Get PDF
    International audienceScene flow is defined as the motion field in 3D space, and can be computed from a single view when using an RGBD sensor. We propose a new scene flow approach that exploits the local and piecewise rigidity of real world scenes. By modeling the motion as a field of twists, our method encourages piecewise smooth solutions of rigid body motions. We give a general formulation to solve for local and global rigid motions by jointly using intensity and depth data. In order to deal efficiently with a moving camera, we model the motion as a rigid component plus a non-rigid residual and propose an alternating solver. The evaluation demonstrates that the proposed method achieves the best results in the most commonly used scene flow benchmark. Through additional experiments we indicate the general applicability of our approach in a variety of different scenarios

    Multiframe Scene Flow with Piecewise Rigid Motion

    Full text link
    We introduce a novel multiframe scene flow approach that jointly optimizes the consistency of the patch appearances and their local rigid motions from RGB-D image sequences. In contrast to the competing methods, we take advantage of an oversegmentation of the reference frame and robust optimization techniques. We formulate scene flow recovery as a global non-linear least squares problem which is iteratively solved by a damped Gauss-Newton approach. As a result, we obtain a qualitatively new level of accuracy in RGB-D based scene flow estimation which can potentially run in real-time. Our method can handle challenging cases with rigid, piecewise rigid, articulated and moderate non-rigid motion, and does not rely on prior knowledge about the types of motions and deformations. Extensive experiments on synthetic and real data show that our method outperforms state-of-the-art.Comment: International Conference on 3D Vision (3DV), Qingdao, China, October 201
    corecore