29 research outputs found

    3D Scene Modeling from Dense Video Light Fields

    Get PDF
    International audienceLight field imaging offers unprecedented opportunities for advanced scene analysis and modelling, with potential applications in various domains such as augmented reality, 3D robotics, and microscopy. This paper illustrates the potential of dense video light fields for 3D scene modeling. We first recall the principles of plenoptic cameras and present a downloadable test dataset captured with a Raytrix 2.0 plenop-tic camera. Methods to estimate the scene depth and to construct a 3D point cloud representation of the scene from the captured light field are then described.

    Deep Depth From Focus

    Full text link
    Depth from focus (DFF) is one of the classical ill-posed inverse problems in computer vision. Most approaches recover the depth at each pixel based on the focal setting which exhibits maximal sharpness. Yet, it is not obvious how to reliably estimate the sharpness level, particularly in low-textured areas. In this paper, we propose `Deep Depth From Focus (DDFF)' as the first end-to-end learning approach to this problem. One of the main challenges we face is the hunger for data of deep neural networks. In order to obtain a significant amount of focal stacks with corresponding groundtruth depth, we propose to leverage a light-field camera with a co-calibrated RGB-D sensor. This allows us to digitally create focal stacks of varying sizes. Compared to existing benchmarks our dataset is 25 times larger, enabling the use of machine learning for this inverse problem. We compare our results with state-of-the-art DFF methods and we also analyze the effect of several key deep architectural components. These experiments show that our proposed method `DDFFNet' achieves state-of-the-art performance in all scenes, reducing depth error by more than 75% compared to the classical DFF methods.Comment: accepted to Asian Conference on Computer Vision (ACCV) 201

    From light rays to 3D models

    Get PDF

    Performance Metrics and Test Data Generation for Depth Estimation Algorithms

    Get PDF
    This thesis investigates performance metrics and test datasets used for the evaluation of depth estimation algorithms. Stereo and light field algorithms take structured camera images as input to reconstruct a depth map of the depicted scene. Such depth estimation algorithms are employed in a multitude of practical applications such as industrial inspection and the movie industry. Recently, they have also been used for safety-relevant applications such as driver assistance and computer assisted surgery. Despite this increasing practical relevance, depth estimation algorithms are still evaluated with simple error measures and on small academic datasets. To develop and select suitable and safe algorithms, it is essential to gain a thorough understanding of their respective strengths and weaknesses. In this thesis, I demonstrate that computing average pixel errors of depth estimation algorithms is not sufficient for a thorough and reliable performance analysis. The analysis must also take into account the specific requirements of the given applications as well as the characteristics of the available test data. I propose metrics to explicitly quantify depth estimation results at continuous surfaces, depth discontinuities, and fine structures. These geometric entities are particularly relevant for many applications and challenging for algorithms. In contrast to prevalent metrics, the proposed metrics take into account that pixels are neither spatially independent within an image nor uniformly challenging nor equally relevant. Apart from performance metrics, test datasets play an important role for evaluation. Their availability is typically limited in quantity, quality, and diversity. I show how test data deficiencies can be overcome by using specific metrics, additional annotations, and stratified test data. Using systematic test cases, a user study, and a comprehensive case study, I demonstrate that the proposed metrics, test datasets, and visualizations allow for a meaningful quantitative analysis of the strengths and weaknesses of different algorithms. In contrast to existing evaluation methodologies, application-specific priorities can be taken into account to identify the most suitable algorithms

    Probabilistic-based Feature Embedding of 4-D Light Fields for Compressive Imaging and Denoising

    Full text link
    The high-dimensional nature of the 4-D light field (LF) poses great challenges in achieving efficient and effective feature embedding, that severely impacts the performance of downstream tasks. To tackle this crucial issue, in contrast to existing methods with empirically-designed architectures, we propose a probabilistic-based feature embedding (PFE), which learns a feature embedding architecture by assembling various low-dimensional convolution patterns in a probability space for fully capturing spatial-angular information. Building upon the proposed PFE, we then leverage the intrinsic linear imaging model of the coded aperture camera to construct a cycle-consistent 4-D LF reconstruction network from coded measurements. Moreover, we incorporate PFE into an iterative optimization framework for 4-D LF denoising. Our extensive experiments demonstrate the significant superiority of our methods on both real-world and synthetic 4-D LF images, both quantitatively and qualitatively, when compared with state-of-the-art methods. The source code will be publicly available at https://github.com/lyuxianqiang/LFCA-CR-NET
    corecore