7,268 research outputs found

    50 Years of the Golomb--Welch Conjecture

    Full text link
    Since 1968, when the Golomb--Welch conjecture was raised, it has become the main motive power behind the progress in the area of the perfect Lee codes. Although there is a vast literature on the topic and it is widely believed to be true, this conjecture is far from being solved. In this paper, we provide a survey of papers on the Golomb--Welch conjecture. Further, new results on Golomb--Welch conjecture dealing with perfect Lee codes of large radii are presented. Algebraic ways of tackling the conjecture in the future are discussed as well. Finally, a brief survey of research inspired by the conjecture is given.Comment: 28 pages, 2 figure

    Interleaving schemes for multidimensional cluster errors

    Get PDF
    We present two-dimensional and three-dimensional interleaving techniques for correcting two- and three-dimensional bursts (or clusters) of errors, where a cluster of errors is characterized by its area or volume. Correction of multidimensional error clusters is required in holographic storage, an emerging application of considerable importance. Our main contribution is the construction of efficient two-dimensional and three-dimensional interleaving schemes. The proposed schemes are based on t-interleaved arrays of integers, defined by the property that every connected component of area or volume t consists of distinct integers. In the two-dimensional case, our constructions are optimal: they have the lowest possible interleaving degree. That is, the resulting t-interleaved arrays contain the smallest possible number of distinct integers, hence minimizing the number of codewords required in an interleaving scheme. In general, we observe that the interleaving problem can be interpreted as a graph-coloring problem, and introduce the useful special class of lattice interleavers. We employ a result of Minkowski, dating back to 1904, to establish both upper and lower bounds on the interleaving degree of lattice interleavers in three dimensions. For the case t≡0 mod 6, the upper and lower bounds coincide, and the Minkowski lattice directly yields an optimal lattice interleaver. For t≠0 mod 6, we construct efficient lattice interleavers using approximations of the Minkowski lattice
    • …
    corecore