30,893 research outputs found

    A Combinatorial Algorithm for All-Pairs Shortest Paths in Directed Vertex-Weighted Graphs with Applications to Disc Graphs

    Full text link
    We consider the problem of computing all-pairs shortest paths in a directed graph with real weights assigned to vertices. For an n×nn\times n 0-1 matrix C,C, let KCK_{C} be the complete weighted graph on the rows of CC where the weight of an edge between two rows is equal to their Hamming distance. Let MWT(C)MWT(C) be the weight of a minimum weight spanning tree of KC.K_{C}. We show that the all-pairs shortest path problem for a directed graph GG on nn vertices with nonnegative real weights and adjacency matrix AGA_G can be solved by a combinatorial randomized algorithm in time O~(n2n+min{MWT(AG),MWT(AGt)})\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}}) As a corollary, we conclude that the transitive closure of a directed graph GG can be computed by a combinatorial randomized algorithm in the aforementioned time. O~(n2n+min{MWT(AG),MWT(AGt)})\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}}) We also conclude that the all-pairs shortest path problem for uniform disk graphs, with nonnegative real vertex weights, induced by point sets of bounded density within a unit square can be solved in time O~(n2.75)\widetilde{O}(n^{2.75})

    Density of isoperimetric spectra

    Full text link
    We show that the set of k-dimensional isoperimetric exponents of finitely presented groups is dense in the interval [1, \infty) for k > 1. Hence there is no higher-dimensional analogue of Gromov's gap (1,2) in the isoperimetric spectrum.Comment: 34 pages, 3 figure

    A general tool for consistency results related to I1

    Get PDF
    In this paper we provide a general tool to prove the consistency of I1(λ)I1(\lambda) with various combinatorial properties at λ\lambda typical at settings with 2λ>λ+2^\lambda>\lambda^+, that does not need a profound knowledge of the forcing notions involved. Examples of such properties are the first failure of GCH, a very good scale and the negation of the approachability property, or the tree property at λ+\lambda^+ and λ++\lambda^{++}

    Measure Recognition Problem

    Get PDF
    This is an article in mathematics, specifically in set theory. On the example of the Measure Recognition Problem (MRP) the article highlights the phenomenon of the utility of a multidisciplinary mathematical approach to a single mathematical problem, in particular the value of a set-theoretic analysis. MRP asks if for a given Boolean algebra \algB and a property Φ\Phi of measures one can recognize by purely combinatorial means if \algB supports a strictly positive measure with property Φ\Phi. The most famous instance of this problem is MRP(countable additivity), and in the first part of the article we survey the known results on this and some other problems. We show how these results naturally lead to asking about two other specific instances of the problem MRP, namely MRP(nonatomic) and MRP(separable). Then we show how our recent work D\v zamonja and Plebanek (2006) gives an easy solution to the former of these problems, and gives some partial information about the latter. The long term goal of this line of research is to obtain a structure theory of Boolean algebras that support a finitely additive strictly positive measure, along the lines of Maharam theorem which gives such a structure theorem for measure algebras
    corecore