132 research outputs found

    Optimizing the usage of 2D and 3D transformations to improve the BM3D image denoising algorithm

    Get PDF
    Image denoising is one of the most important pre-processing steps prior to wide range of applications such as image restoration, visual tracking, image segmentation, etc. Numerous studies have been conducted to improve the denoising performance. Block Matching and 3D (BM3D) filtering is the current state-of-the-art algorithm in image denoising and can provide better denoising performance than other existing methods. However, still, there is scope to improve the performance of BM3D. In this thesis, we have pointed out some of the significant aspects of this algorithm which can be improved and also suggested some approaches to get better denoising performance. We have suggested using an adaptive window size rather than the fixed window size. In addition, we have also suggested using gradient image in the blockmatching step to better facilitate the similar patch searching. Experimental results show that our suggested approaches can produce better results than BM3D irrespective of the types of image

    Postreconstruction filtering of 3D PET images by using weighted higher-order singular value decomposition

    Get PDF
    Additional file 1. Original 3D PET images data used in this work to generate the results

    Image denoising with multi-layer perceptrons, part 1: comparison with existing algorithms and with bounds

    Full text link
    Image denoising can be described as the problem of mapping from a noisy image to a noise-free image. The best currently available denoising methods approximate this mapping with cleverly engineered algorithms. In this work we attempt to learn this mapping directly with plain multi layer perceptrons (MLP) applied to image patches. We will show that by training on large image databases we are able to outperform the current state-of-the-art image denoising methods. In addition, our method achieves results that are superior to one type of theoretical bound and goes a large way toward closing the gap with a second type of theoretical bound. Our approach is easily adapted to less extensively studied types of noise, such as mixed Poisson-Gaussian noise, JPEG artifacts, salt-and-pepper noise and noise resembling stripes, for which we achieve excellent results as well. We will show that combining a block-matching procedure with MLPs can further improve the results on certain images. In a second paper, we detail the training trade-offs and the inner mechanisms of our MLPs

    A SURVEY OF MULTISPECTRAL IMAGE DENOISING METHODS FOR SATELLITE IMAGERY APPLICATIONS

    Get PDF
    In comparison with the standard RGB or gray-scale images, the usual multispectral images (MSI) are intended to convey high definition and anauthentic representation for real world scenes to significantly enhance the performance measures of several other tasks involving with computervision, segmentation of image, object extraction, and object tagging operations. While procuring images form satellite, the MSI are often prone tonoises. Finding a good mathematical description of the learning-based denoising model is a difficult research question and many different researchesaccounted in the literature. Many have attempted its use with the application of neural network as a sparse learned dictionary of noisy patches.Furthermore, this approach allows several algorithm to optimize itself for the given task at hand using machine learning algorithm. However, inpractices, a MSI image is always prone to corruption by various sources of noises while procuring the images. In this survey, we studied the pasttechniques attempted for the noise influenced MSI images. The survey presents the outline of past techniques and their respective advantages incomparison with each other

    Adaptive Edge-guided Block-matching and 3D filtering (BM3D) Image Denoising Algorithm

    Get PDF
    Image denoising is a well studied field, yet reducing noise from images is still a valid challenge. Recently proposed Block-matching and 3D filtering (BM3D) is the current state of the art algorithm for denoising images corrupted by Additive White Gaussian noise (AWGN). Though BM3D outperforms all existing methods for AWGN denoising, still its performance decreases as the noise level increases in images, since it is harder to find proper match for reference blocks in the presence of highly corrupted pixel values. It also blurs sharp edges and textures. To overcome these problems we proposed an edge guided BM3D with selective pixel restoration. For higher noise levels it is possible to detect noisy pixels form its neighborhoods gray level statistics. We exploited this property to reduce noise as much as possible by applying a pre-filter. We also introduced an edge guided pixel restoration process in the hard-thresholding step of BM3D to restore the sharpness of edges and textures. Experimental results confirm that our proposed method is competitive and outperforms the state of the art BM3D in all considered subjective and objective quality measurements, particularly in preserving edges, textures and image contrast

    A CANDLE for a deeper in-vivo insight

    Full text link
    A new Collaborative Approach for eNhanced Denoising under Low-light Excitation (CANDLE) is introduced for the processing of 3D laser scanning multiphoton microscopy images. CANDLE is designed to be robust for low signal-to-noise ratio (SNR) conditions typically encountered when imaging deep in scattering biological specimens. Based on an optimized non-local means filter involving the comparison of filtered patches, CANDLE locally adapts the amount of smoothing in order to deal with the noise inhomogeneity inherent to laser scanning fluorescence microscopy images. An extensive validation on synthetic data, images acquired on microspheres and in vivo images is presented. These experiments show that the CANDLE filter obtained competitive results compared to a state-of-the-art method and a locally adaptive optimized non-local means filter, especially under low SNR conditions (PSNR < 8 dB). Finally, the deeper imaging capabilities enabled by the proposed filter are demonstrated on deep tissue in vivo images of neurons and fine axonal processes in the Xenopus tadpole brain.We want to thank Florian Luisier for providing free plugin of his PureDenoise filter. We also want to thank Markku Makitalo for providing the code of their OVST. This study was supported by the Canadian Institutes of Health Research (CIHR, MOP-84360 to DLC and MOP-77567 to ESR) and Cda (CECR)-Gevas-OE016. MM holds a fellowship from the Deutscher Akademischer Austasch Dienst (DAAD) and a McGill Principal's Award. ESR is a tier 2 Canada Research Chair. This work has been partially supported by the Spanish Health Institute Carlos III through the RETICS Combiomed, RD07/0067/2001. This work benefited from the use of ImageJ.Coupé, P.; Munz, M.; Manjón Herrera, JV.; Ruthazer, ES.; Collins, DL. (2012). A CANDLE for a deeper in-vivo insight. Medical Image Analysis. 16(4):849-864. https://doi.org/10.1016/j.media.2012.01.002S84986416
    corecore