1,459 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Quality of Service (QoS) security in mobile ad hoc networks

    Get PDF
    With the rapid proliferation of wireless networks and mobile computing applications, Quality of Service (QoS) for mobile ad hoc networks (MANETs) has received increased attention. Security is a critical aspect of QoS provisioning in the MANET environment. Without protection from a security mechanism, attacks on QoS signaling system could result in QoS routing malfunction, interference of resource reservation, or even failure of QoS provision. Due to the characteristics of the MANETs, such as rapid topology change and limited communication and computation capacity, the conventional security measures cannot be applied and new security techniques are necessary. However, little research has been done on this topic. In this dissertation, the security issues will be addressed for MANET QoS systems. The major contributions of this research are: (a) design of an authentication mechanism for ad hoc networks; (b) design of a security mechanism to prevent and detect attacks on the QoS signaling system; (c) design of an intrusion detection mechanism for bandwidth reservation to detect QoS attacks and Denial of Service (DoS) attacks. These three mechanisms are evaluated through simulation

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    Study of Performance of Security Protocols in Wireless Mesh Network

    Get PDF
    Wireless Mesh Networks (WMNs) represent a good solution to providing wireless Internet connectivity in a sizable geographic area; this new and promising paradigm allows for network deployment at a much lower cost than with classic WiFi networks. Standards-based wireless access takes advantage of the growing popularity of inexpensive Wi-Fi clients,enabling new service opportunities and applications that improve user productivity and responsiveness. The deployment of WMNs, are suffered by : (i) All, the communications being wireless and therefore prone to interference, present severe capacity and delay constraints, (ii) The second reason that slows down the deployment of WMNs is the lack of security guarantees. Wireless mesh networks mostly susceptible to routing protocol threats and route disruption attacks. Most of these threats require packet injection with a specialized knowledge of the routing protocol; the threats to wireless mesh networks and are summarized as (i) External attacks: in which attackers not belonging to the network jam the communication or inject erroneous information, and (ii) Internal attacks: in which attackers are internal, compromised nodes that are difficult to be detected. The MAC layers of WMN are subjected to the attacks like Eavesdropping, Link Layer Jamming Attack, MAC Spoofing Attack, and Replay Attack. The attacks in Network Layer are: Control Plane Attacks, Data Plane Attacks, Rushing attack, Wormhole attack, and Black Hole Attack. In this project work we are concern with the threats related to Network layer of WMN based upon 802.11i and analysis the performance of secure routing protocols and their performance against the intrusion detection

    Evaluation of on-demand routing in mobile ad hoc networks and proposal for a secure routing protocol

    Get PDF
    Secure routing Mobile Ad hoc Networks (MANETs) has emerged as an important MANET research area. Initial work in MANET focused mainly on the problem of providing efficient mechanisms for finding paths in very dynamic networks, without considering the security of the routing process. Because of this, a number of attacks exploit these routing vulnerabilities to manipulate MANETs. In this thesis, we performed an in-depth evaluation and performance analysis of existing MANET Routing protocols, identifying Dynamic Source Routing (DSR) as the most robust (based on throughput, latency and routing overhead) which can be secured with negligible routing efficiency trade-off. We describe security threats, specifically showing their effects on DSR. We proposed a new routing protocol, named Authenticated Source Routing for Ad hoc Networks (ASRAN) which is an out-of-band certification-based, authenticated source routing protocol with modifications to the route acquisition process of DSR to defeat all identified attacks. Simulation studies confirm that ASRAN has a good trade-off balance in reference to the addition of security and routing efficiency

    A survey on wireless ad hoc networks

    Get PDF
    A wireless ad hoc network is a collection of wireless nodes that can dynamically self-organize into an arbitrary and temporary topology to form a network without necessarily using any pre-existing infrastructure. These characteristics make ad hoc networks well suited for military activities, emergency operations, and disaster recoveries. Nevertheless, as electronic devices are getting smaller, cheaper, and more powerful, the mobile market is rapidly growing and, as a consequence, the need of seamlessly internetworking people and devices becomes mandatory. New wireless technologies enable easy deployment of commercial applications for ad hoc networks. The design of an ad hoc network has to take into account several interesting and difficult problems due to noisy, limited-range, and insecure wireless transmissions added to mobility and energy constraints. This paper presents an overview of issues related to medium access control (MAC), routing, and transport in wireless ad hoc networks and techniques proposed to improve the performance of protocols. Research activities and problems requiring further work are also presented. Finally, the paper presents a project concerning an ad hoc network to easily deploy Internet services on low-income habitations fostering digital inclusion8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI

    Diseño de mecanismos para el desarrollo de sistemas seguros con calidad de servicio (QoS)

    Get PDF
    Seguridad y Calidad de Servicio (QoS) son aspectos ampliamente confrontados. En esta tesis se realiza un análisis detallado de las características y requisitos de seguridad y QoS en las redes candidatas a formar parte de la Internet del Futuro (IF) y de la Internet de los Objetos (IdO), así como de los mecanismos actuales para el análisis de la compensación entre mecanismos de seguridad y QoS. De este estudio se desprende la necesidad de definir nuevos modelos para la evaluación del impacto entre mecanismos de seguridad y QoS, dado que la mayor parte de los estudios centra sus esfuerzos en entornos específicos y características determinadas que no pueden ser fácilmente mapeadas a otros entornos, o cambiar dinámicamente. Por ello definimos un modelo para la composición de esquemas de definición paramétrica basado en el contexto, definido por sus siglas en inglés, Context-based Parametric Relationship Model (CPRM). Este modelo es implementado en una herramienta para la evaluación de mecanismos de Seguridad y QoS (SQT), y su rendimiento evaluado en base a la información integrada en los contextos y la dependencia paramétrica. Finalmente, para mejorar la visualización de los resultados y agilizar la comprensión del modelo definimos un sistema de recomendaciones para la herramienta SQT (SQT-RS). El análisis del modelo y de la herramienta se realiza empleando dos casos base dentro de escenarios del FI: mecanismos de autenticación en redes de sensores (WSN) y recomendaciones para la composición de mecanismos en escenarios de 5G Green sometidos a eavesdropping y jamming
    corecore