1,064 research outputs found

    Weaknesses of the Boyd-Mao Deniable Authenticated key Establishment for Internet Protocols

    Get PDF
    In 2003, Boyd and Mao proposed two deniable authenticated key establishment protocols using elliptic curve pairings for Internet protocols, one is based on Diffie-Hellman key exchange and the other is based on Public-Key Encryption approach. For the use of elliptic curve pairings, they declared that their schemes could be more efficient than the existing Internet Key Exchange (IKE), nowadays. However in this paper, we will show that both of Boyd-Mao¡¦s protocols suffer from the key-Compromise Impersonation attack

    Deniable encryption, authentication, and key exchange

    Get PDF
    We present some foundational ideas related to deniable encryption, message authentication, and key exchange in classical cryptography. We give detailed proofs of results that were previously only sketched in the literature. In some cases, we reach the same conclusions as in previous papers; in other cases, the focus on rigorous proofs leads us to different formulations of the results

    Deniable Key Establishment Resistance against eKCI Attacks

    Get PDF
    In extended Key Compromise Impersonation (eKCI) attack against authenticated key establishment (AKE) protocols the adversary impersonates one party, having the long term key and the ephemeral key of the other peer party. Such an attack can be mounted against variety of AKE protocols, including 3-pass HMQV. An intuitive countermeasure, based on BLS (Boneh–Lynn–Shacham) signatures, for strengthening HMQV was proposed in literature. The original HMQV protocol fulfills the deniability property: a party can deny its participation in the protocol execution, as the peer party can create a fake protocol transcript indistinguishable from the real one. Unfortunately, the modified BLS based version of HMQV is not deniable. In this paper we propose a method for converting HMQV (and similar AKE protocols) into a protocol resistant to eKCI attacks but without losing the original deniability property. For that purpose, instead of the undeniable BLS, we use a modification of Schnorr authentication protocol, which is deniable and immune to ephemeral key leakages

    Modelling Cryptographic Attacks by Powerful Adversaries

    Get PDF

    Ensuring data confidentiality via plausibly deniable encryption and secure deletion – a survey

    Get PDF
    Ensuring confidentiality of sensitive data is of paramount importance, since data leakage may not only endanger dataowners’ privacy, but also ruin reputation of businesses as well as violate various regulations like HIPPA andSarbanes-Oxley Act. To provide confidentiality guarantee, the data should be protected when they are preserved inthe personal computing devices (i.e.,confidentiality duringtheirlifetime); and also, they should be rendered irrecoverableafter they are removed from the devices (i.e.,confidentiality after their lifetime). Encryption and secure deletion are usedto ensure data confidentiality during and after their lifetime, respectively.This work aims to perform a thorough literature review on the techniques being used to protect confidentiality of thedata in personal computing devices, including both encryption and secure deletion. Especially for encryption, wemainly focus on the novel plausibly deniable encryption (PDE), which can ensure data confidentiality against both acoercive (i.e., the attacker can coerce the data owner for the decryption key) and a non-coercive attacker

    Federated Identity Management Systems: A Privacy-based Characterization

    Full text link
    Identity management systems store attributes associated with users and facilitate authorization on the basis of these attributes. A privacy-driven characterization of the principal design choices for identity management systems is given, and existing systems are fit into this framework. The taxonomy of design choices also can guide public policy relating to identity management, which is illustrated using the United States NSTIC initiative
    corecore