3 research outputs found

    Areas of areas generate the shuffle algebra

    Get PDF
    We consider the anti-symmetrization of the half-shuffle on words, which we call the 'area' operator, since it corresponds to taking the signed area of elements of the iterated-integral signature. The tensor algebra is a so-called Tortkara algebra under this operator. We show that the iterated application of the area operator is sufficient to recover the iterated-integral signature of a path. Just as the "information" the second level adds to the first one is known to be equivalent to the area between components of the path, this means that all the information added by subsequent levels is equivalent to iterated areas. On the way to this main result, we characterize (homogeneous) generating sets of the shuffle algebra. We finally discuss compatibility between the area operator and discrete integration and stochastic integration and conclude with some results on the linear span of the areas of areas.Comment: added examples and remarks, corrected semimartingale/martingale par

    The Magnus expansion and some of its applications

    Get PDF
    Approximate resolution of linear systems of differential equations with varying coefficients is a recurrent problem shared by a number of scientific and engineering areas, ranging from Quantum Mechanics to Control Theory. When formulated in operator or matrix form, the Magnus expansion furnishes an elegant setting to built up approximate exponential representations of the solution of the system. It provides a power series expansion for the corresponding exponent and is sometimes referred to as Time-Dependent Exponential Perturbation Theory. Every Magnus approximant corresponds in Perturbation Theory to a partial re-summation of infinite terms with the important additional property of preserving at any order certain symmetries of the exact solution. The goal of this review is threefold. First, to collect a number of developments scattered through half a century of scientific literature on Magnus expansion. They concern the methods for the generation of terms in the expansion, estimates of the radius of convergence of the series, generalizations and related non-perturbative expansions. Second, to provide a bridge with its implementation as generator of especial purpose numerical integration methods, a field of intense activity during the last decade. Third, to illustrate with examples the kind of results one can expect from Magnus expansion in comparison with those from both perturbative schemes and standard numerical integrators. We buttress this issue with a revision of the wide range of physical applications found by Magnus expansion in the literature.Comment: Report on the Magnus expansion for differential equations and its applications to several physical problem
    corecore