227 research outputs found

    A pragmatic approach to multi-class classification

    Full text link
    We present a novel hierarchical approach to multi-class classification which is generic in that it can be applied to different classification models (e.g., support vector machines, perceptrons), and makes no explicit assumptions about the probabilistic structure of the problem as it is usually done in multi-class classification. By adding a cascade of additional classifiers, each of which receives the previous classifier's output in addition to regular input data, the approach harnesses unused information that manifests itself in the form of, e.g., correlations between predicted classes. Using multilayer perceptrons as a classification model, we demonstrate the validity of this approach by testing it on a complex ten-class 3D gesture recognition task.Comment: European Symposium on artificial neural networks (ESANN), Apr 2015, Bruges, Belgium. 201

    Classification of Benthic Habitat Based on Object with Support Vector Machines and Decision Tree Algorithm Using Spot-7 Multispectral Imagery in Harapan and Kelapa Island

    Full text link
    The research of object based image classification (OBIA) with machine learning algorithm for high resolution image in Indonesia is still limited especially for coral reef mapping, therefore further research needed for comparison in method and application of algorithms as alternative of classification. This research aims to map benthic habitat based on multiscale classification using OBIA method with support vector machine and decision tree algorithm in Harapan Island and Kelapa Island, Kepulauan Seribu. Segmentation was performed using a multiresolution segmentation algorithm with a scale factor of 15. The OBIA method is applied to atmospheric corrected images with a predefined benthic habitat classification scheme. The overall accuracy of SVM and DT algorithm implementations are 76.68% and 60.62%, respectively. The Z statistic value analysis obtained from the application of two algorithms used is 2.23, where this value indicates that the classification with SVM algorithm is significantly different from the DT algorithm. This research suggest that the OBIA technique could be a promise approach for mapping benthic habitats

    Benchmark of structured machine learning methods for microbial identification from mass-spectrometry data

    Full text link
    Microbial identification is a central issue in microbiology, in particular in the fields of infectious diseases diagnosis and industrial quality control. The concept of species is tightly linked to the concept of biological and clinical classification where the proximity between species is generally measured in terms of evolutionary distances and/or clinical phenotypes. Surprisingly, the information provided by this well-known hierarchical structure is rarely used by machine learning-based automatic microbial identification systems. Structured machine learning methods were recently proposed for taking into account the structure embedded in a hierarchy and using it as additional a priori information, and could therefore allow to improve microbial identification systems. We test and compare several state-of-the-art machine learning methods for microbial identification on a new Matrix-Assisted Laser Desorption/Ionization Time-of-Flight mass spectrometry (MALDI-TOF MS) dataset. We include in the benchmark standard and structured methods, that leverage the knowledge of the underlying hierarchical structure in the learning process. Our results show that although some methods perform better than others, structured methods do not consistently perform better than their "flat" counterparts. We postulate that this is partly due to the fact that standard methods already reach a high level of accuracy in this context, and that they mainly confuse species close to each other in the tree, a case where using the known hierarchy is not helpful

    Development of a simple artificial intelligence method to accurately subtype breast cancers based on gene expression barcodes

    Get PDF
    >Magister Scientiae - MScINTRODUCTION: Breast cancer is a highly heterogeneous disease. The complexity of achieving an accurate diagnosis and an effective treatment regimen lies within this heterogeneity. Subtypes of the disease are not simply molecular, i.e. hormone receptor over-expression or absence, but the tumour itself is heterogeneous in terms of tissue of origin, metastases, and histopathological variability. Accurate tumour classification vastly improves treatment decisions, patient outcomes and 5-year survival rates. Gene expression studies aided by transcriptomic technologies such as microarrays and next-generation sequencing (e.g. RNA-Sequencing) have aided oncology researcher and clinician understanding of the complex molecular portraits of malignant breast tumours. Mechanisms governing cancers, which include tumorigenesis, gene fusions, gene over-expression and suppression, cellular process and pathway involvementinvolvement, have been elucidated through comprehensive analyses of the cancer transcriptome. Over the past 20 years, gene expression signatures, discovered with both microarray and RNA-Seq have reached clinical and commercial application through the development of tests such as Mammaprint®, OncotypeDX®, and FoundationOne® CDx, all which focus on chemotherapy sensitivity, prediction of cancer recurrence, and tumour mutational level. The Gene Expression Barcode (GExB) algorithm was developed to allow for easy interpretation and integration of microarray data through data normalization with frozen RMA (fRMA) preprocessing and conversion of relative gene expression to a sequence of 1's and 0's. Unfortunately, the algorithm has not yet been developed for RNA-Seq data. However, implementation of the GExB with feature-selection would contribute to a machine-learning based robust breast cancer and subtype classifier. METHODOLOGY: For microarray data, we applied the GExB algorithm to generate barcodes for normal breast and breast tumour samples. A two-class classifier for malignancy was developed through feature-selection on barcoded samples by selecting for genes with 85% stable absence or presence within a tissue type, and differentially stable between tissues. A multi-class feature-selection method was employed to identify genes with variable expression in one subtype, but 80% stable absence or presence in all other subtypes, i.e. 80% in n-1 subtypes. For RNA-Seq data, a barcoding method needed to be developed which could mimic the GExB algorithm for microarray data. A z-score-to-barcode method was implemented and differential gene expression analysis with selection of the top 100 genes as informative features for classification purposes. The accuracy and discriminatory capability of both microarray-based gene signatures and the RNA-Seq-based gene signatures was assessed through unsupervised and supervised machine-learning algorithms, i.e., K-means and Hierarchical clustering, as well as binary and multi-class Support Vector Machine (SVM) implementations. RESULTS: The GExB-FS method for microarray data yielded an 85-probe and 346-probe informative set for two-class and multi-class classifiers, respectively. The two-class classifier predicted samples as either normal or malignant with 100% accuracy and the multi-class classifier predicted molecular subtype with 96.5% accuracy with SVM. Combining RNA-Seq DE analysis for feature-selection with the z-score-to-barcode method, resulted in a two-class classifier for malignancy, and a multi-class classifier for normal-from-healthy, normal-adjacent-tumour (from cancer patients), and breast tumour samples with 100% accuracy. Most notably, a normal-adjacent-tumour gene expression signature emerged, which differentiated it from normal breast tissues in healthy individuals. CONCLUSION: A potentially novel method for microarray and RNA-Seq data transformation, feature selection and classifier development was established. The universal application of the microarray signatures and validity of the z-score-to-barcode method was proven with 95% accurate classification of RNA-Seq barcoded samples with a microarray discovered gene expression signature. The results from this comprehensive study into the discovery of robust gene expression signatures holds immense potential for further R&F towards implementation at the clinical endpoint, and translation to simpler and cost-effective laboratory methods such as qtPCR-based tests

    Bag-Level Aggregation for Multiple Instance Active Learning in Instance Classification Problems

    Full text link
    A growing number of applications, e.g. video surveillance and medical image analysis, require training recognition systems from large amounts of weakly annotated data while some targeted interactions with a domain expert are allowed to improve the training process. In such cases, active learning (AL) can reduce labeling costs for training a classifier by querying the expert to provide the labels of most informative instances. This paper focuses on AL methods for instance classification problems in multiple instance learning (MIL), where data is arranged into sets, called bags, that are weakly labeled. Most AL methods focus on single instance learning problems. These methods are not suitable for MIL problems because they cannot account for the bag structure of data. In this paper, new methods for bag-level aggregation of instance informativeness are proposed for multiple instance active learning (MIAL). The \textit{aggregated informativeness} method identifies the most informative instances based on classifier uncertainty, and queries bags incorporating the most information. The other proposed method, called \textit{cluster-based aggregative sampling}, clusters data hierarchically in the instance space. The informativeness of instances is assessed by considering bag labels, inferred instance labels, and the proportion of labels that remain to be discovered in clusters. Both proposed methods significantly outperform reference methods in extensive experiments using benchmark data from several application domains. Results indicate that using an appropriate strategy to address MIAL problems yields a significant reduction in the number of queries needed to achieve the same level of performance as single instance AL methods

    Unsupervised mining of audiovisually consistent segments in videos with application to structure analysis

    Get PDF
    International audienceIn this paper, a multimodal event mining technique is proposed to discover repeating video segments exhibiting audio and visual consistency in a totally unsupervised manner. The mining strategy first exploits independent audio and visual cluster analysis to provide segments which are consistent in both their visual and audio modalities, thus likely corresponding to a unique underlying event. A subsequent modeling stage using discriminative models enables accurate detection of the underlying event throughout the video. Event mining is applied to unsupervised video structure analysis, using simple heuristics on occurrence patterns of the events discovered to select those relevant to the video structure. Results on TV programs ranging from news to talk shows and games, show that structurally relevant events are discovered with precisions ranging from 87% to 98% and recalls from 59% to 94%

    EEG sleep stages identification based on weighted undirected complex networks

    Get PDF
    Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. Methods each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. Results In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by NaĂŻve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. Conclusions An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard

    Machine Learning (ML) module

    Get PDF
    Lectures notes of the machine learning content of the course TOML (Topics on Optimization and Machine Learning) at Master in Innovation and Research in Informatics (MIRI) at FIB, UPC.2023/202
    • …
    corecore