4,269 research outputs found

    Plasmonic Demultiplexer and Guiding

    Full text link
    Two-dimensional plasmonic demultiplexers for surface plasmon polaritons (SPPs), which consist of concentric grooves on a gold film, are proposed and experimentally demonstrated to realize light-SPP coupling, effective dispersion and multiple-channel SPP guiding. A resolution as high as 10 nm is obtained. The leakage radiation microscopy imaging shows that the SPPs of different wavelengths are focused and routed into different SPP strip waveguides. The plasmonic demultiplexer can thus serve as a wavelength division multiplexing element for integrated plasmonic circuit and also as a plasmonic spectroscopy or filter.Comment: 17 pages, 5 figure

    Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform

    Get PDF

    Instantaneous Clockless Data Recovery and Demultiplexing

    Get PDF
    An alternative architecture for instantaneous data recovery for burst-mode communication is introduced. The architecture can perform 1:n demultiplexing without additional clock recovery phase-locked loop or sampling blocks. A finite-state machine (FSM) is formed with combinational logic and analog LC transmission line delay cells in a feedback loop. The FSM responds to input data transitions instantaneously and sets the outputs. The system reduces unit interval jitter by a factor of n. The new architecture is demonstrated via a SiGe 1:2 clockless demultiplexer circuit that operates at 7.5 Gb/s

    Tunable 4-channel ultra-dense WDM demultiplexer with III-V photodiodes integrated in silicon-on-insulator

    Get PDF
    A tunable 4-channel ultra-dense WDM demultiplexer with 0.25nm channel spacing is demonstrated with III-V photodiodes integrated on Silicon-on-Insulator using rib waveguides. A possible application is an in-band label extractor for all-optical packet switching

    A compact and reconfigurable silicon nitride time-bin entanglement circuit

    Get PDF
    Photonic chip based time-bin entanglement has attracted significant attention because of its potential for quantum communication and computation. Useful time-bin entanglement systems must be able to generate, manipulate and analyze entangled photons on a photonic chip for stable, scalable and reconfigurable operation. Here we report the first time-bin entanglement photonic chip that integrates time-bin generation, wavelength demultiplexing and entanglement analysis. A two-photon interference fringe with an 88.4% visibility is measured (without subtracting any noise), indicating the high performance of the chip. Our approach, based on a silicon nitride photonic circuit, which combines the low-loss characteristic of silica and tight integration features of silicon, paves the way for scalable real-world quantum information processors.Comment: 4 pages, 5 figure
    • …
    corecore