972 research outputs found

    Evaluation of IoT-Based Computational Intelligence Tools for DNA Sequence Analysis in Bioinformatics

    Full text link
    In contemporary age, Computational Intelligence (CI) performs an essential role in the interpretation of big biological data considering that it could provide all of the molecular biology and DNA sequencing computations. For this purpose, many researchers have attempted to implement different tools in this field and have competed aggressively. Hence, determining the best of them among the enormous number of available tools is not an easy task, selecting the one which accomplishes big data in the concise time and with no error can significantly improve the scientist's contribution in the bioinformatics field. This study uses different analysis and methods such as Fuzzy, Dempster-Shafer, Murphy and Entropy Shannon to provide the most significant and reliable evaluation of IoT-based computational intelligence tools for DNA sequence analysis. The outcomes of this study can be advantageous to the bioinformatics community, researchers and experts in big biological data

    Combination of Evidence in Dempster-Shafer Theory

    Full text link

    Epistemic Uncertainty Quantification in Scientific Models

    Get PDF
    In the field of uncertainty quantification (UQ), epistemic uncertainty often refers to the kind of uncertainty whose complete probabilistic description is not available, largely due to our lack of knowledge about the uncertainty. Quantification of the impacts of epistemic uncertainty is naturally difficult, because most of the existing stochastic tools rely on the specification of the probability distributions and thus do not readily apply to epistemic uncertainty. And there have been few studies and methods to deal with epistemic uncertainty. A recent work can be found in [J. Jakeman, M. Eldred, D. Xiu, Numerical approach for quantification of epistemic uncertainty, J. Comput. Phys. 229 (2010) 4648-4663], where a framework for numerical treatment of epistemic uncertainty was proposed. In this paper, firstly, we present a new method, similar to that of Jakeman et al. but significantly extending its capabilities. Most notably, the new method (1) does not require the encapsulation problem to be in a bounded domain such as a hypercube; (2) does not require the solution of the encapsulation problem to converge point-wise. In the current formulation, the encapsulation problem could reside in an unbounded domain, and more importantly, its numerical approximation could be sought in Lp norm. These features thus make the new approach more flexible and amicable to practical implementation. Both the mathematical framework and numerical analysis are presented to demonstrate the effectiveness of the new approach. And then, we apply this methods to work with one of the more restrictive uncertainty models, i.e., the fuzzy logic, where the p-distance, the weighted expected value and variance are defined to assess the accuracy of the solutions. At last, we give a brief introduction to our future work, which is epistemic uncertainty quantification using evidence theory

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Uncertainty Assessment in High-Risk Environments Using Probability, Evidence Theory and Expert Judgment Elicitation

    Get PDF
    The level of uncertainty in advanced system design is assessed by comparing the results of expert judgment elicitation to probability and evidence theory. This research shows how one type of monotone measure, namely Dempster-Shafer Theory of Evidence can expand the framework of uncertainty to provide decision makers a more robust solution space. The issues imbedded in this research are focused on how the relevant predictive uncertainty produced by similar action is measured. This methodology uses the established approach from traditional probability theory and Dempster-Shafer evidence theory to combine two classes of uncertainty, aleatory and epistemic. Probability theory provides the mathematical structure traditionally used in the representation of aleatory uncertainty. The uncertainty in analysis outcomes is represented by probability distributions and typically summarized as Complimentary Cumulative Distribution Functions (CCDFs). The main components of this research are probability of X in the probability theory compared to mx in evidence theory. Using this comparison, an epistemic model is developed to obtain the upper “CCPF - Complimentary Cumulative Plausibility Function” limits and the lower “CCBF - Complimentary Cumulative Belief Function” limits compared to the traditional probability function. A conceptual design for the Thermal Protection System (TPS) of future Crew Exploration Vehicles (CEV) is used as an initial test case. A questionnaire is tailored to elicit judgment from experts in high-risk environments. Based on description and characteristics, the answers of the questionnaire produces information, that serves as qualitative semantics used for the evidence theory functions. The computational mechanism provides a heuristic approach for the compilation and presentation of the results. A follow-up evaluation serves as validation of the findings and provides useful information in terms of consistency and adoptability to other domains. The results of this methodology provide a useful and practical approach in conceptual design to aid the decision maker in assessing the level of uncertainty of the experts. The methodology presented is well-suited for decision makers that encompass similar conceptual design instruments
    • …
    corecore