195 research outputs found

    Alternative color filter array layouts for digital photography

    Get PDF
    The performance of digital cameras depends not only on the accuracy of methods of restoration of missed color samples (demosaicking) for a given color filter array, but also from spatial configuration of color sensors in the color filter array (CFA) itself. This paper considers three different color filter array (CFA) patterns; the established (2 by 2) Bayer pattern, the 3 by 2 (6-sample) and the 3 by 3 diagonal Bayer CFA. One difficulty in comparing the different schemes is the influence of the demosaicking algorithm on the result. In order to remove this dependence we propose three methods of comparison. They are: (a) measuring widowed averages of colors on large areas (b) visual comparison of interference between regular patterns of images and CFA, and (c) utilization of one layer neural networks to build demosaicking algorithm for selected color filter arrays. A substantial image database comprising 1338 images has been used to experimentally validate the different patterns

    The effect of the color filter array layout choice on state-of-the-art demosaicing

    Get PDF
    Interpolation from a Color Filter Array (CFA) is the most common method for obtaining full color image data. Its success relies on the smart combination of a CFA and a demosaicing algorithm. Demosaicing on the one hand has been extensively studied. Algorithmic development in the past 20 years ranges from simple linear interpolation to modern neural-network-based (NN) approaches that encode the prior knowledge of millions of training images to fill in missing data in an inconspicious way. CFA design, on the other hand, is less well studied, although still recognized to strongly impact demosaicing performance. This is because demosaicing algorithms are typically limited to one particular CFA pattern, impeding straightforward CFA comparison. This is starting to change with newer classes of demosaicing that may be considered generic or CFA-agnostic. In this study, by comparing performance of two state-of-the-art generic algorithms, we evaluate the potential of modern CFA-demosaicing. We test the hypothesis that, with the increasing power of NN-based demosaicing, the influence of optimal CFA design on system performance decreases. This hypothesis is supported with the experimental results. Such a finding would herald the possibility of relaxing CFA requirements, providing more freedom in the CFA design choice and producing high-quality cameras

    Universal Demosaicking of Color Filter Arrays

    Get PDF
    A large number of color filter arrays (CFAs), periodic or aperiodic, have been proposed. To reconstruct images from all different CFAs and compare their imaging quality, a universal demosaicking method is needed. This paper proposes a new universal demosaicking method based on inter-pixel chrominance capture and optimal demosaicking transformation. It skips the commonly used step to estimate the luminance component at each pixel, and thus, avoids the associated estimation error. Instead, we directly use the acquired CFA color intensity at each pixel as an input component. Two independent chrominance components are estimated at each pixel based on the interpixel chrominance in the window, which is captured with the difference of CFA color values between the pixel of interest and its neighbors. Two mechanisms are employed for the accurate estimation: distance-related and edge-sensing weighting to reflect the confidence levels of the inter-pixel chrominance components, and pseudoinverse-based estimation from the components in a window. Then from the acquired CFA color component and two estimated chrominance components, the three primary colors are reconstructed by a linear color transform, which is optimized for the least transform error. Our experiments show that the proposed method is much better than other published universal demosaicking methods.National Key Basic Research Project of China (973 Program) [2015CB352303, 2011CB302400]; National Natural Science Foundation (NSF) of China [61071156, 61671027]SCI(E)[email protected]; [email protected]; [email protected]; [email protected]

    Spatio-Spectral Sampling and Color Filter Array Design

    Get PDF
    Owing to the growing ubiquity of digital image acquisition and display, several factors must be considered when developing systems to meet future color image processing needs, including improved quality, increased throughput, and greater cost-effectiveness. In consumer still-camera and video applications, color images are typically obtained via a spatial subsampling procedure implemented as a color filter array (CFA), a physical construction whereby only a single component of the color space is measured at each pixel location. Substantial work in both industry and academia has been dedicated to post-processing this acquired raw image data as part of the so-called image processing pipeline, including in particular the canonical demosaicking task of reconstructing a full-color image from the spatially subsampled and incomplete data acquired using a CFA. However, as we detail in this chapter, the inherent shortcomings of contemporary CFA designs mean that subsequent processing steps often yield diminishing returns in terms of image quality. For example, though distortion may be masked to some extent by motion blur and compression, the loss of image quality resulting from all but the most computationally expensive state-of-the-art methods is unambiguously apparent to the practiced eye. … As the CFA represents one of the first steps in the image acquisition pipeline, it largely determines the maximal resolution and computational efficiencies achievable by subsequent processing schemes. Here, we show that the attainable spatial resolution yielded by a particular choice of CFA is quantifiable and propose new CFA designs to maximize it. In contrast to the majority of the demosaicking literature, we explicitly consider the interplay between CFA design and properties of typical image data and its implications for spatial reconstruction quality. Formally, we pose the CFA design problem as simultaneously maximizing the allowable spatio-spectral support of luminance and chrominance channels, subject to a partitioning requirement in the Fourier representation of the sensor data. This classical aliasing-free condition preserves the integrity of the color image data and thereby guarantees exact reconstruction when demosaicking is implemented as demodulation (demultiplexing in frequency)
    • …
    corecore