22 research outputs found

    Design and Implementation of a System for Data Traffic Management in a Real-Time Processing Farm Operated at 1 MHz

    Get PDF
    The majority of contemporary high-energy physics experiments study rare phenomena, which necessitates real-time high-throughput data processing to reduce the raw detector data rate of several Tbyte/s to a rate which is feasible for storage and detailed analysis. Unique trigger systems select the physical events relevant to the experiment. Typically, data fragments corresponding to the same event and originating from multiple detector data sources need to be assembled in a specific location before being processed further. The resulting communication model can lead to congestions and to inefficient system utilization if data are transferred without supervision since numerous sources are attempting to use common interconnect and computing recourses concurrently. This thesis deals with the measures taken to ensure a congestion-free, load-balanced operation of a real-time trigger farm processing data packets as small as several kbytes at a megahertz rate. The input data are initially split among multiple data feeds and need to be assembled and processed within a few milliseconds. The processing farm is built around commodity PCs which are interconnected with a commercial high-speed low-latency network implementing a torus topology. The thesis presents a system for data traffic management based on a global traffic supervisor and a dedicated control network. The former allocates distributed computing resources dynamically in order to avoid network congestions as well as to balance the load of the system. The latter communicates supervising information to all data feeds in order to initiate a controlled data transfer. A congestion-free system operation is demonstrated in a farm prototype with an integrated hardware-based implementation of the traffic shaping system. Based on parameters measured in the prototype, simulation results of a large-scale processing farm are presented. Both the prototype and the simulation results demonstrate that the system is capable of transferring input data initially split among multiple PCI-based feeding nodes, each one transmitting sub-fragments of 128 bytes, to a specific remote shared memory location at a rate beyond 2 MHz. The obtained results demonstrate the applicability of multicomputer systems based on commodity components for high-rate, low-latency trigger processing if certain care is taken in organizing the actual data transfers. This organization has to ensure efficient event building and appropriate allocation of the available processing resources

    Radio data network

    Get PDF
    Radio Data Network is the title of a product, a product that is the results of three years studying Telecommunications, and one more Electrical and Electronic engineering. I had pretended that the purpose was a mix of both degrees, studying Radiofrequency but at the same time using Electronic methods to create a device able to be developed in a real application. The application in question is in a zoo, it pretends to be a useful technology to control from one place the habitat features of all the animals, measuring temperature, environmental pressure, relative humidity and more variables, using Wireless standards and simple circuitry in each habitat and common hardware and software, such as PC and operative system ‘Windows’, to control take care of the animals in the zoo

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Basil Leaf Automation

    Get PDF
    Recent population and wage increases have forced farmers to grow more food without a proportionate increase in work force. Automation is a key factor in reducing cost and increasing efficiency. In this paper, we explore our automation solution that utilizes position manipulation and vision processing to identify, pick up, and drop a leaf into a can. Two stepper motors and a linear actuator drove the three-dimensional actuation. Leaf and can recognition were accomplished through edge detection and machine learning algorithms. Testing proved subsystem-level functionality and proof of concept of a delicate autonomous pick-and-place robot

    A Practical Hardware Implementation of Systemic Computation

    Get PDF
    It is widely accepted that natural computation, such as brain computation, is far superior to typical computational approaches addressing tasks such as learning and parallel processing. As conventional silicon-based technologies are about to reach their physical limits, researchers have drawn inspiration from nature to found new computational paradigms. Such a newly-conceived paradigm is Systemic Computation (SC). SC is a bio-inspired model of computation. It incorporates natural characteristics and defines a massively parallel non-von Neumann computer architecture that can model natural systems efficiently. This thesis investigates the viability and utility of a Systemic Computation hardware implementation, since prior software-based approaches have proved inadequate in terms of performance and flexibility. This is achieved by addressing three main research challenges regarding the level of support for the natural properties of SC, the design of its implied architecture and methods to make the implementation practical and efficient. Various hardware-based approaches to Natural Computation are reviewed and their compatibility and suitability, with respect to the SC paradigm, is investigated. FPGAs are identified as the most appropriate implementation platform through critical evaluation and the first prototype Hardware Architecture of Systemic computation (HAoS) is presented. HAoS is a novel custom digital design, which takes advantage of the inbuilt parallelism of an FPGA and the highly efficient matching capability of a Ternary Content Addressable Memory. It provides basic processing capabilities in order to minimize time-demanding data transfers, while the optional use of a CPU provides high-level processing support. It is optimized and extended to a practical hardware platform accompanied by a software framework to provide an efficient SC programming solution. The suggested platform is evaluated using three bio-inspired models and analysis shows that it satisfies the research challenges and provides an effective solution in terms of efficiency versus flexibility trade-off

    Research & Technology Report Goddard Space Flight Center

    Get PDF
    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed
    corecore