156 research outputs found

    Embracing and exploiting annotator emotional subjectivity: an affective rater ensemble model

    Get PDF
    Automated recognition of continuous emotions in audio-visual data is a growing area of study that aids in understanding human-machine interaction. Training such systems presupposes human annotation of the data. The annotation process, however, is laborious and expensive given that several human ratings are required for every data sample to compensate for the subjectivity of emotion perception. As a consequence, labelled data for emotion recognition are rare and the existing corpora are limited when compared to other state-of-the-art deep learning datasets. In this study, we explore different ways in which existing emotion annotations can be utilised more effectively to exploit available labelled information to the fullest. To reach this objective, we exploit individual raters’ opinions by employing an ensemble of rater-specific models, one for each annotator, by that reducing the loss of information which is a byproduct of annotation aggregation; we find that individual models can indeed infer subjective opinions. Furthermore, we explore the fusion of such ensemble predictions using different fusion techniques. Our ensemble model with only two annotators outperforms the regular Arousal baseline on the test set of the MuSe-CaR corpus. While no considerable improvements on valence could be obtained, using all annotators increases the prediction performance of arousal by up to. 07 Concordance Correlation Coefficient absolute improvement on test - solely trained on rate-specific models and fused by an attention-enhanced Long-short Term Memory-Recurrent Neural Network

    Multimodal sentiment analysis in real-life videos

    Get PDF
    This thesis extends the emerging field of multimodal sentiment analysis of real-life videos, taking two components into consideration: the emotion and the emotion's target. The emotion component of media is traditionally represented as a segment-based intensity model of emotion classes. This representation is replaced here by a value- and time-continuous view. Adjacent research fields, such as affective computing, have largely neglected the linguistic information available from automatic transcripts of audio-video material. As is demonstrated here, this text modality is well-suited for time- and value-continuous prediction. Moreover, source-specific problems, such as trustworthiness, have been largely unexplored so far. This work examines perceived trustworthiness of the source, and its quantification, in user-generated video data and presents a possible modelling path. Furthermore, the transfer between the continuous and discrete emotion representations is explored in order to summarise the emotional context at a segment level. The other component deals with the target of the emotion, for example, the topic the speaker is addressing. Emotion targets in a video dataset can, as is shown here, be coherently extracted based on automatic transcripts without limiting a priori parameters, such as the expected number of targets. Furthermore, alternatives to purely linguistic investigation in predicting targets, such as knowledge-bases and multimodal systems, are investigated. A new dataset is designed for this investigation, and, in conjunction with proposed novel deep neural networks, extensive experiments are conducted to explore the components described above. The developed systems show robust prediction results and demonstrate strengths of the respective modalities, feature sets, and modelling techniques. Finally, foundations are laid for cross-modal information prediction systems with applications to the correction of corrupted in-the-wild signals from real-life videos

    Time- and value-continuous explainable affect estimation in-the-wild

    Get PDF
    Today, the relevance of Affective Computing, i.e., of making computers recognise and simulate human emotions, cannot be overstated. All technology giants (from manufacturers of laptops to mobile phones to smart speakers) are in a fierce competition to make their devices understand not only what is being said, but also how it is being said to recognise user’s emotions. The goals have evolved from predicting the basic emotions (e.g., happy, sad) to now the more nuanced affective states (e.g., relaxed, bored) real-time. The databases used in such research too have evolved, from earlier featuring the acted behaviours to now spontaneous behaviours. There is a more powerful shift lately, called in-the-wild affect recognition, i.e., taking the research out of the laboratory, into the uncontrolled real-world. This thesis discusses, for the very first time, affect recognition for two unique in-the-wild audiovisual databases, GRAS2 and SEWA. The GRAS2 is the only database till date with time- and value-continuous affect annotations for Labov effect-free affective behaviours, i.e., without the participant’s awareness of being recorded (which otherwise is known to affect the naturalness of one’s affective behaviour). The SEWA features participants from six different cultural backgrounds, conversing using a video-calling platform. Thus, SEWA features in-the-wild recordings further corrupted by unpredictable artifacts, such as the network-induced delays, frame-freezing and echoes. The two databases present a unique opportunity to study time- and value-continuous affect estimation that is truly in-the-wild. A novel ‘Evaluator Weighted Estimation’ formulation is proposed to generate a gold standard sequence from several annotations. An illustration is presented demonstrating that the moving bag-of-words (BoW) representation better preserves the temporal context of the features, yet remaining more robust against the outliers compared to other statistical summaries, e.g., moving average. A novel, data-independent randomised codebook is proposed for the BoW representation; especially useful for cross-corpus model generalisation testing when the feature-spaces of the databases differ drastically. Various deep learning models and support vector regressors are used to predict affect dimensions time- and value-continuously. Better generalisability of the models trained on GRAS2 , despite the smaller training size, makes a strong case for the collection and use of Labov effect-free data. A further foundational contribution is the discovery of the missing many-to-many mapping between the mean square error (MSE) and the concordance correlation coefficient (CCC), i.e., between two of the most popular utility functions till date. The newly invented cost function |MSE_{XY}/σ_{XY}| has been evaluated in the experiments aimed at demystifying the inner workings of a well-performing, simple, low-cost neural network effectively utilising the BoW text features. Also proposed herein is the shallowest-possible convolutional neural network (CNN) that uses the facial action unit (FAU) features. The CNN exploits sequential context, but unlike RNNs, also inherently allows data- and process-parallelism. Interestingly, for the most part, these white-box AI models have shown to utilise the provided features consistent with the human perception of emotion expression

    Continuous Emotion Prediction from Speech: Modelling Ambiguity in Emotion

    Full text link
    There is growing interest in emotion research to model perceived emotion labelled as intensities along the affect dimensions such as arousal and valence. These labels are typically obtained from multiple annotators who would have their individualistic perceptions of emotional speech. Consequently, emotion prediction models that incorporate variation in individual perceptions as ambiguity in the emotional state would be more realistic. This thesis develops the modelling framework necessary to achieve continuous prediction of ambiguous emotional states from speech. Besides, emotion labels, feature space distribution and encoding are an integral part of the prediction system. The first part of this thesis examines the limitations of current low-level feature distributions and their minimalistic statistical descriptions. Specifically, front-end paralinguistic acoustic features are reflective of speech production mechanisms. However, discriminatively learnt features have frequently outperformed acoustic features in emotion prediction tasks, but provide no insights into the physical significance of these features. One of the contributions of this thesis is the development of a framework that can modify the acoustic feature representation based on emotion label information. Another investigation in this thesis indicates that emotion perception is language-dependent and in turn, helped develop a framework for cross-language emotion prediction. Furthermore, this investigation supported the hypothesis that emotion perception is highly individualistic and is better modelled as a distribution rather than a point estimate to encode information about the ambiguity in the perceived emotion. Following this observation, the thesis proposes measures to quantify the appropriateness of distribution types in modelling ambiguity in dimensional emotion labels which are then employed to compare well-known bounded parametric distributions. These analyses led to the conclusion that the beta distribution was the most appropriate parametric model of ambiguity in emotion labels. Finally, the thesis focuses on developing a deep learning framework for continuous emotion prediction as a temporal series of beta distributions, examining various parameterizations of the beta distributions as well as loss functions. Furthermore, distribution over the parameter spaces is examined and priors from kernel density estimation are employed to shape the posteriors over the parameter space which significantly improved valence ambiguity predictions. The proposed frameworks and methods have been extensively evaluated on multiple state of-the-art databases and the results demonstrate both the viability of predicting ambiguous emotion states and the validity of the proposed systems

    Towards uncertainty-aware and label-efficient machine learning of human expressive behaviour

    Get PDF
    The ability to recognise emotional expressions from non-verbal behaviour plays a key role in human-human interaction. Endowing machines with the same ability is critical to enriching human-computer interaction. Despite receiving widespread attention so far, human-level automatic recognition of affective expressions is still an elusive task for machines. Towards improving the current state of machine learning methods applied to affect recognition, this thesis identifies two challenges: label ambiguity and label scarcity. Firstly, this thesis notes that it is difficult to establish a clear one-to-one mapping between inputs (face images or speech segments) and their target emotion labels, considering that emotion perception is inherently subjective. As a result, the problem of label ambiguity naturally arises in the manual annotations of affect. Ignoring this fundamental problem, most existing affect recognition methods implicitly assume a one-to-one input-target mapping and use deterministic function learning. In contrast, this thesis proposes to learn non-deterministic functions based on uncertainty-aware probabilistic models, as they can naturally accommodate the one-to-many input-target mapping. Besides improving the affect recognition performance, the proposed uncertainty-aware models in this thesis demonstrate three important applications: adaptive multimodal affect fusion, human-in-the-loop learning of affect, and improved performance on downstream behavioural analysis tasks like personality traits estimation. Secondly, this thesis aims to address the challenge of scarcity of affect labelled datasets, caused by the cumbersome and time-consuming nature of the affect annotation process. To this end, this thesis notes that audio and visual feature encoders used in the existing models are label-inefficient i.e. learning them requires large amounts of labelled training data. As a solution, this thesis proposes to pre-train the feature encoders using unlabelled data to make them more label-efficient i.e. using as few labelled training examples as possible to achieve good emotion recognition performance. A novel self-supervised pre-training method is proposed in this thesis by posing hand-engineered emotion features as task-specific representation learning priors. By leveraging large amounts of unlabelled audiovisual data, the proposed self-supervised pre-training method demonstrates much better label efficiency compared to the commonly employed pre-training methods

    Towards uncertainty-aware and label-efficient machine learning of human expressive behaviour

    Get PDF
    The ability to recognise emotional expressions from non-verbal behaviour plays a key role in human-human interaction. Endowing machines with the same ability is critical to enriching human-computer interaction. Despite receiving widespread attention so far, human-level automatic recognition of affective expressions is still an elusive task for machines. Towards improving the current state of machine learning methods applied to affect recognition, this thesis identifies two challenges: label ambiguity and label scarcity. Firstly, this thesis notes that it is difficult to establish a clear one-to-one mapping between inputs (face images or speech segments) and their target emotion labels, considering that emotion perception is inherently subjective. As a result, the problem of label ambiguity naturally arises in the manual annotations of affect. Ignoring this fundamental problem, most existing affect recognition methods implicitly assume a one-to-one input-target mapping and use deterministic function learning. In contrast, this thesis proposes to learn non-deterministic functions based on uncertainty-aware probabilistic models, as they can naturally accommodate the one-to-many input-target mapping. Besides improving the affect recognition performance, the proposed uncertainty-aware models in this thesis demonstrate three important applications: adaptive multimodal affect fusion, human-in-the-loop learning of affect, and improved performance on downstream behavioural analysis tasks like personality traits estimation. Secondly, this thesis aims to address the challenge of scarcity of affect labelled datasets, caused by the cumbersome and time-consuming nature of the affect annotation process. To this end, this thesis notes that audio and visual feature encoders used in the existing models are label-inefficient i.e. learning them requires large amounts of labelled training data. As a solution, this thesis proposes to pre-train the feature encoders using unlabelled data to make them more label-efficient i.e. using as few labelled training examples as possible to achieve good emotion recognition performance. A novel self-supervised pre-training method is proposed in this thesis by posing hand-engineered emotion features as task-specific representation learning priors. By leveraging large amounts of unlabelled audiovisual data, the proposed self-supervised pre-training method demonstrates much better label efficiency compared to the commonly employed pre-training methods

    An Ordinal Approach to Affective Computing

    Full text link
    Both depression prediction and emotion recognition systems are often based on ordinal ground truth due to subjectively annotated datasets. Yet, both have so far been posed as classification or regression problems. These naive approaches have fundamental issues because they are not focused on ordering, unlike ordinal regression, which is the most appropriate for truly ordinal ground truth. Ordinal regression to date offers comparatively fewer, more limited methods when compared with other branches in machine learning, and its usage has been limited to specific research domains. Accordingly, this thesis presents investigations into ordinal approaches for affective computing by describing a consistent framework to understand all ordinal system designs, proposing ordinal systems for large datasets, and introducing tools and principles to select suitable system designs and evaluation methods. First, three learning approaches are compared using the support vector framework to establish the empirical advantages of ordinal regression, which is lacking from the current literature. Results on depression and emotion corpora indicate that ordinal regression with proper tuning can improve existing depression and emotion systems. Ordinal logistic regression (OLR), which is an extension of logistic regression for ordinal scales, contributes to a number of model structures, from which the best structure must be chosen. Exploiting the newly proposed computationally efficient greedy algorithm for model structure selection (GREP), OLR outperformed or was comparable with state-of-the-art depression systems on two benchmark depression speech datasets. Deep learning has dominated many affective computing fields, and hence ordinal deep learning is an attractive prospect. However, it is under-studied even in the machine learning literature, which motivates an in-depth analysis of appropriate network architectures and loss functions. One of the significant outcomes of this analysis is the introduction of RankCNet, a novel ordinal network which utilises a surrogate loss function of rank correlation. Not only the modelling algorithm but the choice of evaluation measure depends on the nature of the ground truth. Rank correlation measures, which are sensitive to ordering, are more apt for ordinal problems than common classification or regression measures that ignore ordering information. Although rank-based evaluation for ordinal problems is not new, so far in affective computing, ordinality of the ground truth has been widely ignored during evaluation. Hence, a systematic analysis in the affective computing context is presented, to provide clarity and encourage careful choice of evaluation measures. Another contribution is a neural network framework with a novel multi-term loss function to assess the ordinality of ordinally-annotated datasets, which can guide the selection of suitable learning and evaluation methods. Experiments on multiple synthetic and affective speech datasets reveal that the proposed system can offer reliable and meaningful predictions about the ordinality of a given dataset. Overall, the novel contributions and findings presented in this thesis not only improve prediction accuracy but also encourage future research towards ordinal affective computing: a different paradigm, but often the most appropriate

    Analysis and automatic identification of spontaneous emotions in speech from human-human and human-machine communication

    Get PDF
    383 p.This research mainly focuses on improving our understanding of human-human and human-machineinteractions by analysing paricipants¿ emotional status. For this purpose, we have developed andenhanced Speech Emotion Recognition (SER) systems for both interactions in real-life scenarios,explicitly emphasising the Spanish language. In this framework, we have conducted an in-depth analysisof how humans express emotions using speech when communicating with other persons or machines inactual situations. Thus, we have analysed and studied the way in which emotional information isexpressed in a variety of true-to-life environments, which is a crucial aspect for the development of SERsystems. This study aimed to comprehensively understand the challenge we wanted to address:identifying emotional information on speech using machine learning technologies. Neural networks havebeen demonstrated to be adequate tools for identifying events in speech and language. Most of themaimed to make local comparisons between some specific aspects; thus, the experimental conditions weretailored to each particular analysis. The experiments across different articles (from P1 to P19) are hardlycomparable due to our continuous learning of dealing with the difficult task of identifying emotions inspeech. In order to make a fair comparison, additional unpublished results are presented in the Appendix.These experiments were carried out under identical and rigorous conditions. This general comparisonoffers an overview of the advantages and disadvantages of the different methodologies for the automaticrecognition of emotions in speech
    • …
    corecore