974 research outputs found

    Chinese Energy Security: The Myth of the PLAN\u27s Frontline Status

    Get PDF
    This monograph examines the dynamics of China’s energy security dilemma and the role of the People’s Liberation Army Navy (PLAN). Following this, PLAN development is discussed and its future role in regional security is hypothesized. This report argues that it is domestic market inefficiencies and poor management practices that pose the greatest threat to China’s energy security. Further, less and less of Chinese energy imports are making their way to the country by sea, and as such, the PLAN actually has a minimal role to play. Given these realities, Chinese fears of a naval blockade that deprives it of energy supplies, and American confidence that this is a realistic strategic option in the event of hostilities are implausible. In addition, Beijing’s desire to develop aircraft carriers and other high-tech naval capabilities, combined with its contribution to the anti-piracy mission in the Gulf of Aden, have led many analysts to erroneously conclude that China seeks to engage in global power projection like the United States. However, the focus of the PLAN will remain regional and on asymmetric capabilities, namely the effective use of submarines and other undersea “unknowns” that ultimately seek to deter American and possible Japanese involvement in a conflict over Taiwan and/or maritime features in the South China Sea, such as the Spratly Islands, which China views as inalienable parts of its territory. Although China’s interests are expanding and becoming more international in nature, recovering from the Century of Humiliation and ensuring domestic legitimacy remain the top priorities of China’s leadership.https://press.armywarcollege.edu/monographs/1344/thumbnail.jp

    Practical Applications of NMR to Solve Real-World Problems

    Get PDF
    Nuclear magnetic resonance spectroscopy (NMR) has developed from primarily a method of academic study into a recognized technology that has advanced measurement capabilities within many different industrial sectors. These sectors include areas such as national security, energy, forensics, life sciences, pharmaceuticals, etc. Despite this diversity, these applications have many shared technical challenges and regulatory burdens, yet interdisciplinary cross-talk is often limited. To facilitate the sharing of knowledge, this Special Issue presents technical articles from four different areas, including the oil industry, nanostructured systems and materials, metabolomics, and biologics. These areas use NMR or magnetic resonance imaging (MRI) technologies that range from low-field relaxometry to magnetic fields as high as 700 MHz. Each article represents a practical application of NMR. A few articles are focused on basic research concepts, which will likely have the cross-cutting effect of advancing multiple disciplinary areas

    Coastal Geohazard and Offshore Geotechnics

    Get PDF
    With rapid developments being made in the exploration of marine resources, coastal geohazard and offshore geotechnics have attracted a great deal of attention from coastal geotechnical engineers, with significant progress being made in recent years. Due to the complicated nature of marine environmnets, there are numerous natural marine geohazard preset throughout the world’s marine areas, e.g., the South China Sea. In addition, damage to offshore infrastructure (e.g., monopiles, bridge piers, etc.) and their supporting installations (pipelines, power transmission cables, etc.) has occurred in the last decades. A better understanding of the fundamental mechanisms and soil behavior of the seabed in marine environments will help engineers in the design and planning processes of coastal geotechnical engineering projects. The purpose of this book is to present the recent advances made in the field of coastal geohazards and offshore geotechnics. The book will provide researchers with information reagrding the recent developments in the field, and possible future developments. The book is composed of eighteen papers, covering three main themes: (1) the mechanisms of fluid–seabed interactions and the instability associated with seabeds when they are under dynamic loading (papers 1–5); (2) evaluation of the stability of marine infrastructure, including pipelines (papers 6–8), piled foundation and bridge piers (papers 9–12), submarine tunnels (paper 13), and other supported foundations (paper 14); and (3) coastal geohazards, including submarine landslides and slope stability (papers 15–16) and other geohazard issues (papers 17–18). The editors hope that this book will functoin as a guide for researchers, scientists, and scholars, as well as practitioners of coastal and offshore engineering

    Greenland from Archaean to Quaternary, Descriptive text to the 1995 Geological Map of Greenland 1:2 500 000, 2nd edition

    Get PDF
    The geological development of Greenland spans a period of nearly 4 Ga, from Eoarchaean to the Quaternary. Greenland is the largest island on Earth with a total area of 2 166 000 km2, but only c. 410 000 km2 are exposed bedrock, the remaining part being covered by a major ice sheet (the Inland Ice) reaching over 3 km in thickness. The adjacent offshore areas underlain by continental crust have an area of c. 825 000 km2. Greenland is dominated by crystalline rocks of the Precambrian shield, which formed during a succession of Archaean and Palaeoproterozoic orogenic events and stabilised as a part of the Laurentian shield about 1600 Ma ago. The shield area can be divided into three distinct types of basement provinces: (1) Archaean rocks (3200–2600 Ma old, with local older units up to >3800Ma) that were almost unaffected by Proterozoic or later orogenic activity; (2) Archaean terrains reworked during the Palaeoproterozoic around 1900–1750 Ma ago; and (3) terrains mainly composed of juvenile Palaeoproterozoic rocks (2000–1750 Ma in age).Subsequent geological developments mainly took place along the margins of the shield. During the Proterozoic and throughout the Phanerozoic major sedimentary basins formed, notably in North and North-East Greenland, in which sedimentary successions locally reaching 18 km in thickness were deposited. Palaeozoic orogenic activity affected parts of these successions in the Ellesmerian fold belt of North Greenland and the East Greenland Caledonides; the latter also incorporates reworked Precambrian crystalline basement complexes. Late Palaeozoic and Mesozoic sedimentary basins developed along the continent–ocean margins in North, East and West Greenland and are now preserved both onshore and offshore. Their development was closely related to continental break-up with formation of rift basins. Initial rifting in East Greenland in latest Devonian to earliest Carboniferous time and succeeding phases culminated with the opening of the North Atlantic Ocean in the late Paleocene. Sea-floor spreading was accompanied by extrusion of Palaeogene (early Tertiary) plateau basalts in both central West and central–southern East Greenland. During the Quaternary Greenland was almost completely covered by ice, and the present day Inland Ice is a relic from the Pleistocene ice ages. Vast amounts of glacially eroded detritus were deposited on the continental shelves around Greenland. Mineral exploitation in Greenland has so far encompassed cryolite, lead-zinc, gold, olivine and coal. Current prospecting activities in Greenland are concentrated on gold, base metals, platinum group elements, molybdenum, iron ore, diamonds and lead-zinc. Hydrocarbon potential is confined to the major Phanerozoic sedimentary basins, notably the large basins offshore North-East and West Greenland. While reserves of oil or gas have yet to be found, geophysical data com bined with discoveries of oil seeps onshore have revealed a considerable potential for offshore oil and gas

    Uncertainty reduction in reservoir parameters prediction from multiscale data using machine learning in deep offshore reservoirs.

    Get PDF
    Developing a complete characterization of reservoir properties involved in subsurface multiphase flow is a very challenging task. In most cases, these properties - such as porosity, water saturation, permeability (and their variants), pressure, wettability, bulk modulus, Young modulus, shear modulus, fracture gradient - cannot be directly measured and, if measured, are available only at small number of well locations. The limited data are then combined with geological interpretation to generate a model. Also increasing the degree of this uncertainty is the fact that the reservoir properties from different data sources - like well logs, cores and well test - often produce different results, thus making predictions less accurate. The present study focussed on three reservoir parameters: porosity, fluid saturation and permeability. These were selected based on literature and sensitivity analysis, using Monte Carlo simulations on net present value, reserve estimates and pressure transients. Sandstone assets from the North Sea were used to establish the technique for uncertainty reduction, using machine learning as well as empirical models after data digitization and cleaning. These models were built (trained) with observed data using other variables as inputs, after which they were tested by then using the input variables (not used for the training) to predict their corresponding observed data. Root Mean Squared Error (RMSE) of the predicted and the actual observed data was calculated. Model tuning was done in order to optimize its key parameters to reduce RMSE. Appropriate log, core and test depth matching was also ensured including upscaling combined with Lorenz plot to identify the dominant flow interval. Nomographic approach involving a numerial simulation run iteratively on multiple non-linear regression model obtained from the dataset was also run. Sandstone reservoirs from the North Sea not used for developing the models were then used to validate the different techniques developed earlier. Based on the above, the degree of uncertainty associated with porosity, permeability and fluid saturation usage was demonstrated and reduced. For example, improved accuracies of 1-74%, 4-77% and 40% were achieved for Raymer, Wyllie and Modified Schlumberger, respectively. Raymer and Wyllie were also not suitable for unconsolidated sandstones while machine learning models were the most accurate. Evaluation of logs, core and test from several wells showed permeability to be different across the board, which also highlights the uncertainty in their interpretation. The gap between log, core and test was also closed using machine learning and nomographic methods. The machine learning model was then coded into a dashboard containing the inputs for its training. Their relationship provides the benchmark to calibrate one against the other, and also to create the platform for real-time reservoir properties prediction. The technology was applied to an independent dataset from the Central North Sea deep offshore sandstone reservoir for the validation of these models, with minimum tuning and thus effective for real-time reservoir and production management. While uncertainties in measurements are crucial, the focus of this work was on the intermediate models to get better final geological models, since the measured data were from the industry

    Biology, fisheries and culture of tropical groupers and snappers

    Get PDF
    Groupers and snappers are important fishery resources of the tropics and subtropics, where their high values have caused most of their stocks to be heavily exploited, some even to the point of collapse. Trends towards heavy demand and decreasing natural supply, which are accelerating in several parts of the world, prompted various mariculture ventures. Focused research on biology and the population dynamics of groupers and snappers, and on their reproduction and growth under controlled condition will remain essential for dealing with the questions on how to better manage their fisheries. This volume of papers presents important scientific findings and views on these two important groups of fish.Percoid fisheries, Fishery biology, Fishery management, Conferences

    Understanding the Global Energy Crisis

    Get PDF
    Central issues in global energy are discussed through interdisciplinary dialogue between experts from both North America and Europe with overview from historical, political, and socio-cultural perspectives, outlining the technology and policy issues facing the development of major conventional and renewable energy sources. We are facing a global energy crisis caused by world population growth, an escalating increase in demand, and continued dependence on fossil-based fuels for generation. It is widely accepted that increases in greenhouse gas concentration levels, if not reversed, will result in major changes to world climate with consequential effects on our society and economy. This is just the kind of intractable problem that Purdue University’s Global Policy Research Institute seeks to address in the Purdue Studies in Public Policy series by promoting the engagement between policy makers and experts in fields such as engineering and technology
    • …
    corecore